方块与收纳盒

##简单dp
title:
链接:https://ac.nowcoder.com/acm/problem/14975
来源:牛客网

现在有一个大小n1的收纳盒,我们手里有无数个大小为11和2*1的小方块,我们需要用这些方块填满收纳盒,请问我们有多少种不同的方法填满这个收纳盒

输入描述:
第一行是样例数T
第2到2+T-1行每行有一个整数n(n<=80),描述每个样例中的n。

输出描述:
对于每个样例输出对应的方法数

示例:
输入
3
1
2
4
输出
1
2
5

题目分析:题目不难,思路就是dp[i]=dp[i-1]+dp[i-2]。

#include<iostream>
using namespace std;
int main()
{
    int t;
    cin >> t;
    long long dp[81]={0};
    dp[1]=1;dp[2]=2;
    for(int i=3;i<81;i++) dp[i]=dp[i-1]+dp[i-2];
    while(t--)
    {
        int n;
        cin >> n;
        cout << dp[n] << endl;
    }
    return 0;
}

对于动态规划专题一直不是很理解,关键还是得刷题,当然首先得要理解这种思路,刷题写代码只是为了巩固、加深自己的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值