##动态规划
title:
https://ac.nowcoder.com/acm/problem/13589
题目分析:
由题:先保存有向图,可以使用一个vector f[110];
∴可以得到状态方程:dp[i][f[j][k]]+=dp[i-1][j]*(1.0/f[j].size());
因为要求很长时间以后的,这里可以尝试一下,求到200就可以了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
double dp[210][110];
vector<int> f[110];
int main()
{
int n,m,u,v;
while(~scanf("%d%d",&n,&m))
{
for(int i=1;i<=n;i++)
{
f[i].clear();
f[i].push_back(i);
}
memset(dp,0,sizeof dp);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
f[u].push_back(v);
}
dp[0][1]=1;
for(int i=1;i<=200;i++)
for(int j=1;j<=n;j++)
for(int k=0;k<f[j].size();k++)
dp[i][f[j][k]]+=dp[i-1][j]*(1.0/f[j].size());
double ans=0;
for(int i=1;i<=n;i++) ans=max(ans,dp[200][i]);
cout << ans << endl;//cout << fixed << setprecision(9) << ans << endl;
}
return 0;
}
代码不难实现,主要是对题目的理解能够到位。能够列出状态方程。
##自我感觉还是对动态规划很不熟悉,代码练得少了,这几天也在猛抓,基础天赋都不太好的话还是要靠努力堆上去。