// [PAT A1003]Emergency.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//思路:使用Dj算法,判断的时候用第二权值并其保存数量
//挑战用了一下邻接表:出现了以下问题:
//1:fill和memset使用不熟练
//1.1:头文件:include<algorithm>;include<cstring>范围:fill用来填充任何数,memset用来填充字符,0、-1
//1.2:fill填充数组为(d,d+MAAV,INF),若为二维数组:(d[0],d[0]+MAXV*MAXV,INF),memset(d,0,sizeof(d))
//2:想尝试把点权加入到结构体当中,暂时没有成功,后面还是用数组进行保存
//3:对节点和向量的使用不熟悉:
//3.1:没有申请节点,直接对向量进行操作
//3.2:对向量进行操作:用push_back
//4:Dj中出现的问题
//4.1:没有初始化最短距离数组和标记数组
//4.2:当最短距离相等时,逻辑思路出现问题:num是不需要进入点权的判断的;
#include <iostream>
#include<vector>//用来充当邻接表的作,用
#include<algorithm>
#include<cstring>
using namespace std;
//全局变量
//忘记的部分:定义起点到其他各点的最短路径的长度以及标记数组
const int MAXV = 1000;//节点的最大数量
const int INF = 1000000000;//用来表示很大的数
int n, m;//n为顶点数、m为边数
int d[MAXV], cost[MAXV];//起点到其他各点的最短路径
int w[MAXV],num[MAXV];//w存放点权(用来更新),num用来存放最短路径的调数
bool vis[MAXV] = { false };//标记数组
//建立节点
struct node
{
int v, dis;//v为顶点、dis为边权、w为点权
node(){}//无参构造函数
node(int _v,int _dis):v(_v),dis(_dis){}//定义有参构造函数
};
//权值单独用一个数组表示
vector<node>adj[MAXV];//邻接表的表示
void Dj(int s){
//初始化
fill(d, d + MAXV , INF);
d[s] = 0;//起点到自己的距离为0;
//经过n个循环,找出最短的路径U,能否通过U到其他各点的值可以进行优化
for (int i = 0; i < n; i++)//循环n次
{
//找起点到各点的最短路径
int u = -1, min = INF;//找出标记值
for (int j = 0; j < n; j++)
{
//一个重要的条件忘了:为未访问的点
if (vis[j]==false&&d[j] < min) { u = j; min = d[j]; }
}
//先判断是否找到了U值
if (u == -1)return;//说明是不连通图
//标记为访问
vis[u] = true;
//判断是否可以经过u进行优化
for (int i = 0; i < adj[u].size(); i++)//u相邻的点看是否可以进行优化
{
//判断是否进行访问并且距离可以更短
//邻接表的话要获取点
int v = adj[u][i].v;
if (vis[v] == false && d[u] + adj[u][i].dis < d[v])
{
d[v] = d[u] + adj[u][i].dis;
w[v] = w[u]+ cost[v];//可以更新的情况下,当前的权值为上一个点的权值加上
num[v] = num[u];//直接继承过来,路径是一样的
}
//直接写成=的话,为表达式必须是可修改的左值
//这个逻辑判断有一定的问题:只要相等就要把路径数增加,不管是不是满足权值可以更新的情况
else if (vis[v] == false && d[u] + adj[u][i].dis == d[v])
{
if(w[u] + cost[v] > w[v])
{
/*d[v] = d[u] + adj[u][i].dis;已经相等就没有必要进行赋值了*/
w[v] = w[u]+ cost[v];
}
//只要找到相同的路径,就要对数量进行累加
num[v] += num[u];//累加
}
}
}
}
int main()
{
//初始化
memset(num, 0, sizeof(num));
memset(w, 0, sizeof(w));
//fill(num, num + MAXV, 0);
初始化num的值也要为s的距离为1,其他为0
//fill(w, w + MAXV, 0);
//起点的点权要加进去初始化
int s, e;//s为起点,e为终点
cin >> n >> m >> s >> e ;
//输入点权的信息
for (int i = 0; i < n; i++)
{
cin >> cost[i];
//adj[i][0].w = c;未经初始化
}
起点的点权要加进去初始化
/*w[s] = adj[s][0].w;*/
num[s] = 1;
w[s] = cost[s];//对权值进行初始化
//输入边权的信息
int st, en, le;
for (int i = 0; i < m; i++)
{
cin >> st >> en >> le;
//结构体加入的情况有问题
adj[st].push_back({en ,le });
adj[en].push_back({st ,le });
//怎么加入邻接表中?
/*adj[st][en].dis = le;*/
/*node n1, n2;
n1.dis = le;
n1.v = en;
adj[st].push_back(n1);
n2.dis =le;
n2.v = en;
adj[en].push_back(n2);*/
}
//初始化顶点的权值
/* for (int i = 0; i < n; i++)
{
adj[i][0].w = cost[i];
}*/
//初始的边权要进行赋值
/*w[s] = adj[s][0].w;*/
Dj(s);
cout << num[e] <<' '<< w[e] << endl;
return 0;
}
[PAT A1003]Emergency:邻接表复习总结
最新推荐文章于 2024-11-10 21:54:30 发布