数据分析模型 第五章

一. 假设检验(Hypothesis Testing)

看到第五章,可能大家会有两个问题:
1.是否我们的参数等于一个具体的数值么?
2.如果有多个模型是否,其中某一个模型更能诠释我们的数据.
本章我们就讨论下第一个问题
假设检验(Hypothesis Testing)通常应用在参数的估计上。这个词,很明显,我们假设是否我们的真参等于某个数值,然后进行检验是否我们的原假设正确.
先介绍下假设检验写法:

                    H 0 : H_0: H0: 原假设(虚假设,0假设,null hypothesis)

                        V S VS VS

                    H 1 : H_1: H1: 对立假设(备择假设,alternative hypothesis)

啥意思?我们随便写一个:
假如我们这里有个总体一大把数据服从正态分布
那么我们假设检验的写法:
                    H 0 : H_0: H0: μ = μ 0 \mu=\mu_0 μ=μ0

                        V S VS VS

                    H 1 : H_1: H1: μ ≠ μ 0 \mu≠\mu_0 μ=μ0

根据上述写法,原假设 H 0 : H_0: H0: μ = μ 0 \mu=\mu_0 μ=μ0,对立假设 H 1 : H_1: H1: μ ≠ μ 0 \mu≠\mu_0 μ=μ0原假设的反面.于是我们会问自己,是否我们的样本数据可以证明我们的假设是否 μ \mu μ等于一个具体的固定的数值 μ 0 \mu_0 μ0?
这里有两点核心在假设检验中:
1.我们假想原假设是正确的
2.我们利用样本的数据来计算概率来证明是否我们的原假设正确,概率(p-值)越小,说明样本数据提供大量的证据来反对我们的原假设.
这两句话很抽象,没事,来个简单的例题理解下.

例题:
假如我们的总体服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), μ \mu μ未知, σ 2 \sigma^2 σ2已知。 μ 0 \mu_0 μ0是我们猜的一个具体的数值并认为 μ = μ 0 \mu=\mu_0 μ=μ0.
那么我们的测试写成:
                    H 0 : H_0: H0: μ = μ 0 \mu=\mu_0 μ=μ0

                        V S VS VS

                    H 1 : H_1: H1: μ ≠ μ 0 \mu≠\mu_0 μ=μ0
我们的任务使利用样本来判断是否原假设成立。

错解:
给大家做个错误的做法,可能有很多同学会进入这个误区.
假如抽取一组样本 Y 1 , Y 2 , . . . , Y n Y_1,Y_2,...,Y_n Y1,Y2,...,Yn从我们的总体中,如果这道题抛开假设检验不谈,我们是不是发现,这题怎么跟算置信区间很像。根据我们第四章,我们知道 Y 1 , Y 2 , . . . , Y n ~ N ( μ , σ 2 ) Y_1,Y_2,...,Y_n~N(\mu,\sigma^2) Y1,Y2,...,YnN(μ,σ2),也知道 μ ˉ M L = Y ˉ = 1 n ∑ i = 1 n Y i ~ N ( μ , σ 2 n ) \bar \mu_{ML}=\bar Y=\frac{1}{n}\sum_{i=1}^{n}Y_i~N(\mu,\frac{\sigma^2}{n}) μˉML=Yˉ=n1i=1nYiN(μ,nσ2) ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) (\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) (μˉMLμ)/(σn )N(0,1),取95%,那么估计 μ \mu μ的置信区间为 P { μ ˉ M L − 1.96 σ n < μ < μ ˉ M L + 1.96 σ n } = 0.95 P\{ \bar \mu_{ML}-1.96\frac{\sigma}{\sqrt n}<\mu<\bar \mu_{ML}+1.96\frac{\sigma}{\sqrt n}\}=0.95 P{μˉML1.96n σ<μ<μˉML+1.96n σ}=0.95这个结论的含义是我们有95%的自信度,真参 μ \mu μ落在这个区间里. 现在我们在把假设检验也思考进去,因为我们猜 μ = μ 0 \mu=\mu_0 μ=μ0(原假设),那我们希望 μ 0 \mu_0 μ0在这个置信区间内.如果不在这个置信区间内,则原假设错误。
这样做对么?很明显不对,为什么,不要忘了,我们取的样本是有很大的随机性的,点估计有很大随机性.正如第四章内容:
在这里插入图片描述
假如我们原假设 H 0 : μ = 1.65 H_0: \mu=1.65 H0:μ=1.65,因为取样一次算点估计,取得样本为(1.70,1.10,1.53,0.90)得到95%置信区间(0.997,1.617), μ = 1.65 \mu=1.65 μ=1.65不在区间内。但你能说他错么?1.65这不就是真参的具体值么,但我们却把原假设定义为错的.

正解:我们要利用p值来判断是否原假设成立!!!

p值(p-value)
p值是由费雪大哥想出来的,虽然p-值饱受争议,但放心,它的争议跟我们涉及使用它没半毛关系。争议主要在于哲学的思考上面,对于由p值引申的学术研究有着思考方向性的影响.
讲p值之前,小弟和大家讲个笑话:天气预报说明天80%概率晴天,1%的概率天上掉钱,5%的概率天上掉饼,4%概率天上掉外星人,5%冰雹,3%沙尘暴…

这个笑话其实挺严肃的,如果在我们心里10%以下概率认为根本不会发生,那么是不是无论有多么不可能,明天我们还是挺期待的,因为除了晴天,还有20%的概率会有些乱七八糟的事情们可能会发生.这20%我们可以把它当作p值,而这p值超出了我们心里认为的10%概率的根本不会发生事件。

这种想法在某种程度上弥补了我们上述点估计的随机性,弥补了原假设 H 0 : μ = 1.65 H_0: \mu=1.65 H0:μ=1.65我们会把它当错。因为无论多荒唐的事情,他们累加到一起发生的概率其实还是很可观的,所以发生什么事情其实都不需要很惊讶的。所以p值其实是观察数据后,所有极端的结果出现的概率。

接着上述例题,我们已知 Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1),那么如果我们假设成立,那么我们的 z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) ~ N ( 0 , 1 ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n})~N(0,1) zμˉML=(μˉMLμ0)/(σn )N(0,1),这个公式用在假设检验里时,也叫z-score,另外我们也知道 μ ˉ M L = Y ˉ = 1 n ∑ i = 1 n Y i ~ N ( μ , σ 2 n ) \bar \mu_{ML}=\bar Y=\frac{1}{n}\sum_{i=1}^{n}Y_i~N(\mu,\frac{\sigma^2}{n}) μˉML=Yˉ=n1i=1nYiN(μ,nσ2)

我们具体来看看z-score 公式(测试统计数据(Test statistic,z score))
z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) ~ N ( 0 , 1 ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n})~N(0,1) zμˉML=(μˉMLμ0)/(σn )N(0,1)
根据标准正态分布,上述z-score公式的分子 ( μ ˉ M L − μ 0 ) (\bar\mu_{ML}-\mu_0) (μˉMLμ0)描述了我们的点估计和我们假设的 μ 0 \mu_0 μ0之间的差距,分母 ( σ n ) (\sigma \sqrt{n}) (σn )是标准方差,那么这个公式其实在讲,点估计和我们假设的 μ 0 \mu_0 μ0之间差了有多少个标准方差。

我们之前也提到了,点估计 μ ˉ M L \bar\mu_{ML} μˉML怎么着也不会完全等于 μ 0 \mu_0 μ0,即使我们假设正确 μ = μ 0 \mu=\mu_0 μ=μ0. 举个例子,真参平均身高1.7米,你原假设猜中了,但你抽的样本很背,抽到样本均值身高2米,但其实这种极端情况我们是可以接受的,并也会证明你的原假设没问题。但如果你抽的样本均值身高100米,这我们就不能接受了,你思考的不仅仅是你原假设有问题了,你该思考我在研究什么了。

再者,根据上述观点,我们做假设检验的时候,我们其实是在问自己:根据样本数据得到的 μ ˉ M L \bar\mu_{ML} μˉML来证明 μ = μ 0 \mu=\mu_0 μ=μ0有多么不成立,也就是说我们其实本质上是反对原假设的,站在反对原假设,支持备择假设的立场来证明的。因为备择假设 μ ≠ μ 0 \mu≠\mu_0 μ=μ0,所以在 Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1)中,为这个标准正态分布的两小端,概率低,所以这两端地方对应的 μ 0 \mu_0 μ0可以认为是不等于 μ \mu μ的. 有的同学会讲,那既然如此,为什么不能把写原假设为 H 0 : μ ≠ μ 0 H_0:\mu≠\mu_0 H0μ=μ0,备择假设写为 H 1 : μ = μ 0 H_1:\mu=\mu_0 H1μ=μ0.这个问题小弟当时问过老师,老师原话是这是书写习惯。

因为备择假设 μ ≠ μ 0 \mu≠\mu_0 μ=μ0,所以在 Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1)中,为这个标准正态分布的两小端,这两小段的概率很低并且离我们认为的真参 μ \mu μ相差甚远,所以再回到 z μ ˉ M L z_{\bar \mu_{ML}} zμˉML这个公式,我们要考虑正方向和反方向即 ± ∣ z μ ˉ M L ∣ ±|z_{\bar \mu_{ML}}| ±zμˉML,如果 μ ˉ M L \bar\mu_{ML} μˉML μ 0 \mu_0 μ0大,那么差多少个标准差,如果 μ ˉ M L \bar\mu_{ML} μˉML μ 0 \mu_0 μ0小,那么差多少个标准差,这其实也是标准正态分布的特点. 所以无论正差还是负差,差越大,越不好,毕竟 ( μ ˉ M L − μ 0 ) (\bar\mu_{ML}-\mu_0) (μˉMLμ0)我们的点估计和我们假设的 μ 0 \mu_0 μ0之间的差距越来越大,越不像。但记住,如果把他们累加到一起,他们的概率发生还是很可观的。那么它们所有加一起的概率可以写成:
p = p 值 = 1 − P ( − ∣ z μ ˉ M L ∣ < Z < + ∣ z μ ˉ M L ∣ ) = 2 P { Z < − ∣ z μ ˉ M L ∣ } p=p值=1-P(-|z_{\bar \mu_{ML}}|<Z<+|z_{\bar \mu_{ML}}|)=2P\{Z<-|z_{\bar \mu_{ML}}|\} p=p=1P(zμˉML<Z<+zμˉML)=2P{Z<zμˉML}
这就是我们的p值,这里的 Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1) 2 P { Z < − ∣ z μ ˉ M L ∣ } 2P\{Z<-|z_{\bar \mu_{ML}}|\} 2P{Z<zμˉML},x2因为正态分布的对称性. z μ ˉ M L z_{\bar \mu_{ML}} zμˉML叫 测试统计数据(Test statistic,z score)也叫z-score。 于是我们可以根据给的表格算出p值,学校里都会给计算p值的表格吧?!

但现在有个问题,现在有p值了,那多少才算发生这些事情的概率很可观呢,对没错利用95%的置信区间,很久以前费雪大哥给p值定义了一个特殊的概率阈值,根据人类的认知。但为了统一,就利用95%的置信区间的P{Z<-1.96}和P{Z>1.96}作为阈值了。啥是阈值,阈值就是个界.但我们不能把它想成坐标里的一个点,应该是一小段概率。

如下图:
在这里插入图片描述
该上图标准正态分布两边阴影面积的概率为1-95%=5%=0.05,假设我们把0.05概率当成我们人类可以接受极端概率发生的总和。
那么如果 ± ∣ z μ ˉ M L ∣ ±|z_{\bar \mu_{ML}}| ±zμˉML在95%区间内,它的p值= 2 P { Z < − ∣ z μ ˉ M L ∣ } 2P\{Z<-|z_{\bar \mu_{ML}}|\} 2P{Z<zμˉML}>0.05,所以,原假设 μ = μ 0 \mu=\mu_0 μ=μ0我们认为可以发生,即使 μ ˉ M L \bar \mu_{ML} μˉML μ 0 \mu_0 μ0差了十万八千里,就像我们举过的例子,真参平均身高1.7米,你猜1.65.但你抽的样本很背,抽到样本均值身高2米,但你利用p值发现你的原假设其实是对的。因为原假设的概率 P { ± z μ ˉ M L } P\{±z_{\bar \mu_{ML}}\} P{±zμˉML}在很多极端事情的里面,而这个这些极端事情发生的概率我们认为是可接受的,即可发生的.

那么如果 ± ∣ z μ ˉ M L ∣ ±|z_{\bar \mu_{ML}}| ±zμˉML在95%区间外,它的p值= 2 P { Z < − ∣ z μ ˉ M L ∣ } 2P\{Z<-|z_{\bar \mu_{ML}}|\} 2P{Z<zμˉML}<0.05,这概率就低于我们认可的极端概率发生的总和。那么它是真的太难发生了。所以原假设 μ = μ 0 \mu=\mu_0 μ=μ0我们认为太难发生了,也就是错的.千万别钻牛角尖,有的同学会说,在难也会发生,是没错,人嘛抱有希望是对的,但普罗大众认为不可能,认为不可能发生。

现在我们来学学几句官话:
p-值的具体评级(grade of p-value):

p>0.05,我们的样本数据有很弱的证据(weak evidence)来违抗我们的原假设.(原假设正确)

0.01<p<0.05,我们的样本数据有着适当的证据(moderate evidence)来违抗我们的原假设。(原假设还行吧,不好不坏)

p<0.01,我们的样本数据有很强的证据(strong evidence)来违抗我们的原假设.(原假设错误)

好到这,我相信大家对p值和假设检验有了最基本的了解,系好安全带,我们才刚刚开始,现在准备起飞。

检验正态分布的均值,已知方差(Test mean of normal distribution with known variance)
1.原假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0,备择假设 H 1 : μ ≠ μ 0 H_1:\mu≠\mu_0 H1:μ=μ0:
那么:
Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1)
保留该标准正态分布的左侧和右侧阈值。

再计算z-score:
z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) ~ N ( 0 , 1 ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n})~N(0,1) zμˉML=(μˉMLμ0)/(σn )N(0,1)

计算p-值:
p = 1 − P ( − ∣ z μ ˉ M L ∣ < Z < + ∣ z μ ˉ M L ∣ ) = 2 P { Z < − ∣ z μ ˉ M L ∣ } p=1-P(-|z_{\bar \mu_{ML}}|<Z<+|z_{\bar \mu_{ML}}|)=2P\{Z<-|z_{\bar \mu_{ML}}|\} p=1P(zμˉML<Z<+zμˉML)=2P{Z<zμˉML}
那么综合上述,如下图(双边检验):
在这里插入图片描述
图中的Null 为原假设, ± z μ ±z_{\mu} ±zμ ± z μ ˉ M L ±z_{\bar \mu_{ML}} ±zμˉML, z为 Z Z Z, p为p值。我们再根据p值的评级来判断是否原假设成立或不成立.

原假设是"=",对立假设是"≠"。那么我们根据对立假设"≠",而不是原假设是"="。因为"≠",所以在 Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1)中,为这个标准正态分布的两小端即左和右阈值的左端和右端,所以 z μ ˉ M L z_{\bar \mu_{ML}} zμˉML这个公式要考虑我们要考虑正方向和反方向即 ± ∣ z μ ˉ M L ∣ ±|z_{\bar \mu_{ML}}| ±zμˉML,所以也被称为双边检验(both side test)。

2.原假设 H 0 : μ < = μ 0 H_0:\mu<=\mu_0 H0:μ<=μ0,备择假设 H 1 : μ > μ 0 H_1:\mu>\mu_0 H1:μ>μ0:
其实我们也能写成原假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0,备择假设 H 1 : μ > μ 0 H_1:\mu>\mu_0 H1:μ>μ0

但没有原假设 H 0 : μ < μ 0 H_0:\mu<\mu_0 H0:μ<μ0,备择假设 H 1 : μ > μ 0 H_1:\mu>\mu_0 H1:μ>μ0这写法,切记,为什么?

我们还是先看当原假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0,备择假设 H 1 : μ ≠ μ 0 H_1:\mu≠\mu_0 H1:μ=μ0我们知道这是两边检验p值。如果p值过大,则 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0成立。

当原假设不变,备择假设为 H 1 : μ > μ 0 H_1:\mu>\mu_0 H1:μ>μ0时,我们自然是去左边阈值留右边阈值,因为我们基于备择假设要算极端事件概率如下图(单边检验):
在这里插入图片描述
当p值再大一些超过阈值时,是不是已经进入 μ = μ 0 \mu=\mu_0 μ=μ0的范畴内了,但我们也清晰的看到,除了中间侧一大段,也囊括了左侧一小段即 μ < μ 0 \mu<\mu_0 μ<μ0而这一小段的概率是极低的,即阈值,如下图:
在这里插入图片描述

正如上图所示,其实大部分95%概率均支持原假设 μ = μ 0 \mu=\mu_0 μ=μ0,但一小部分概率支持即2.5%支持原假设 μ < μ 0 \mu<\mu_0 μ<μ0,所以我们可以写成原假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0μ=μ0或者 H 0 : μ < = μ 0 H_0:\mu<=\mu_0 H0μ<=μ0,但不能写成 H 0 : μ < μ 0 H_0:\mu<\mu_0 H0μ<μ0因为对比 μ = μ 0 \mu=\mu_0 μ=μ0的概率它的概率太小了。所以在 H 0 : μ < = μ 0 H_0:\mu<=\mu_0 H0μ<=μ0中,其实重点是 μ = μ 0 \mu=\mu_0 μ=μ0.

言归正传,在算法方面还是大同小异:

Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1)
保留该标准正态分布的右侧阈值。

再计算z-score:
z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) ~ N ( 0 , 1 ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n})~N(0,1) zμˉML=(μˉMLμ0)/(σn )N(0,1)

然后计算p值:
p = P { Z > z μ ˉ M L } = 1 − P { Z < z μ ˉ M L } p=P\{Z>z_{\bar \mu_{ML}}\}=1-P\{Z<z_{\bar \mu_{ML}}\} p=P{Z>zμˉML}=1P{Z<zμˉML}

我们再根据p值的评级来判断是否原假设成立或不成立.
这种检验也被称为单边检验(one-side test)

3.原假设 H 0 : μ > = μ 0 H_0:\mu>=\mu_0 H0:μ>=μ0,备择假设 H 1 : μ < μ 0 H_1:\mu<\mu_0 H1:μ<μ0:
根据上述2所写,同理,我们也能写成原假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0
Z = ( μ ˉ M L − μ ) / ( σ n ) ~ N ( 0 , 1 ) Z=(\bar\mu_{ML}-\mu)/(\sigma \sqrt{n})~N(0,1) Z=(μˉMLμ)/(σn )N(0,1)
保留该标准正态分布的左侧阈值。
再计算:
z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) ~ N ( 0 , 1 ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n})~N(0,1) zμˉML=(μˉMLμ0)/(σn )N(0,1)

然后计算p值:
p = P { Z < z μ ˉ M L } p=P\{Z<z_{\bar \mu_{ML}}\} p=P{Z<zμˉML}
我们再根据p值的评级来判断是否原假设成立或不成立.
这种检验也被称为单边检验。

检验正态分布的均值,已知方差(Test mean of normal distribution with known variance)小结

原假设(H0)备择假设(H1)测试统计数据(Test statistic,z score)p值阈值
μ = μ 0 \mu=\mu_0 μ=μ0 μ ≠ μ 0 \mu≠\mu_0 μ=μ0 z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n}) zμˉML=(μˉMLμ0)/(σn ) 2 P { Z < − 2P\{Z<- 2P{Z<I z μ ˉ M L z_{\bar \mu_{ML}} zμˉML I } \} }保留两端
μ < = μ 0 \mu<=\mu_0 μ<=μ0 μ > μ 0 \mu>\mu_0 μ>μ0 z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n}) zμˉML=(μˉMLμ0)/(σn ) 1 − P { Z < z μ ˉ M L } 1-P\{Z<z_{\bar \mu_{ML}}\} 1P{Z<zμˉML}保留右端
μ > = μ 0 \mu>=\mu_0 μ>=μ0 μ < μ 0 \mu<\mu_0 μ<μ0 z μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ n ) z_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\sigma \sqrt{n}) zμˉML=(μˉMLμ0)/(σn ) P { Z < z μ ˉ M L } P\{Z<z_{\bar \mu_{ML}}\} P{Z<zμˉML}保留左端

* Z ~ N ( 0 , 1 ) Z~N(0,1) ZN(0,1)

看到这里,大家基本上对假设检验和p值得原理有了充足的认识,那么我们就可以结合第4章,根据它们不同的分布,来判断图像,找阈值,算p值,判断原假设是否成立,均大同小异。

检验正态分布的均值,未知方差(Test mean of normal distribution with unknown variance)(t检验,t-test)
(具体分布原理请看第4章:置信区间与样本均值和总体方差)

无偏差估计计算均值:
μ ˉ M L = Y ˉ = 1 n ∑ i = 1 n Y i ~ N ( μ , σ 2 n ) \bar \mu_{ML}=\bar Y=\frac{1}{n}\sum_{i=1}^{n}Y_i~N(\mu,\frac{\sigma^2}{n}) μˉML=Yˉ=n1i=1nYiN(μ,nσ2)

无偏差估计计算方差:
σ ˉ 2 = 1 n − 1 ∑ i = 1 n ( y i − μ ˉ M L ) 2 \bar \sigma^2=\frac{1}{n-1}\sum_{i=1}^{n}(y_i-\bar\mu_{ML})^2 σˉ2=n11i=1n(yiμˉML)2

计算测试统计数据(Test statistic,t score) t-score:
t μ ˉ M L = ( μ ˉ M L − μ 0 ) / ( σ ˉ n ) ~ T ( n − 1 ) t_{\bar \mu_{ML}}=(\bar\mu_{ML}-\mu_0)/(\bar\sigma \sqrt{n})~T(n-1) tμˉML=(μˉMLμ0)/(σˉn )T(n1)
我们知道,它服从n-1自由度的t-分布。所以也叫t检测(t-test)
之后一样的操作,计算p值,评价p值,判断原假设是否成立.

原假设(H0)备择假设(H1)测试统计数据(Test statistic,t score)p值阈值
μ = μ 0 \mu=\mu_0 μ=μ0 μ ≠ μ 0 \mu≠\mu_0 μ=μ0 ( μ ˉ M L − μ 0 ) / ( σ ˉ n ) (\bar\mu_{ML}-\mu_0)/(\bar\sigma \sqrt{n}) (μˉMLμ0)/(σˉn ) 2 P { T < − 2P\{T<- 2P{T<I t μ ˉ M L t_{\bar \mu_{ML}} tμˉML I } \} }保留两端
μ < = μ 0 \mu<=\mu_0 μ<=μ0 μ > μ 0 \mu>\mu_0 μ>μ0 ( μ ˉ M L − μ 0 ) / ( σ ˉ n ) (\bar\mu_{ML}-\mu_0)/(\bar\sigma \sqrt{n}) (μˉMLμ0)/(σˉn ) 1 − P { T < t μ ˉ M L } 1-P\{T<t_{\bar \mu_{ML}}\} 1P{T<tμˉML}保留右端
μ > = μ 0 \mu>=\mu_0 μ>=μ0 μ < μ 0 \mu<\mu_0 μ<μ0 ( μ ˉ M L − μ 0 ) / ( σ ˉ n ) (\bar\mu_{ML}-\mu_0)/(\bar\sigma \sqrt{n}) (μˉMLμ0)/(σˉn ) P { T < t μ ˉ M L } P\{T<t_{\bar \mu_{ML}}\} P{T<tμˉML}保留左端

* T ~ T ( n − 1 ) T~T(n-1) TT(n1)

检验不同正态分布的均值是否相同,已知方差(Test difference mean of normal distribution with known variance)
(具体分布原理请看第4章:置信区间和样本均值的差值1.总体均值 μ A \mu_A μA, μ B \mu_B μB未知,总体方差 σ A 2 \sigma^2_A σA2 σ B 2 \sigma^2_B σB2已知)

分别计算对应的无偏估计均值:
μ ˉ x = 1 n x ∑ i = 1 n x x i , μ ˉ y = 1 n y ∑ i = 1 n y y i \bar\mu_x=\frac{1}{n_x}\sum_{i=1}^{n_x}x_i, \bar\mu_y=\frac{1}{n_y}\sum_{i=1}^{n_y}y_i μˉx=nx1i=1nxxi,μˉy=ny1i=1nyyi

假如原假设成立则 μ x − μ y = 0 \mu_x-\mu_y=0 μxμy=0,所以:
μ ˉ x − μ ˉ y ~ N ( μ x − μ y = 0 , σ x 2 n x + σ y 2 n y ) \bar\mu_x-\bar\mu_y~N(\mu_x-\mu_y=0,\frac{\sigma^2_x}{n_x}+\frac{\sigma^2_y}{n_y}) μˉxμˉyN(μxμy=0,nxσx2+nyσy2)

则z-score:
z ( μ ˉ x − μ ˉ y ) = ( μ ˉ x − μ ˉ y ) / σ x 2 n x + σ y 2 n y ~ N ( 0 , 1 ) z_{(\bar\mu_x-\bar\mu_y)}=(\bar\mu_x-\bar\mu_y)/\sqrt{\frac{\sigma^2_x}{n_x}+\frac{\sigma^2_y}{n_y}}~N(0,1) z(μˉxμˉy)=(μˉxμˉy)/nxσx2+nyσy2 N(0,1)

原假设(H0)备择假设(H1)测试统计数据(Test statistic,z score)p值阈值
μ x = μ y \mu_x=\mu_y μx=μy μ x ≠ μ y \mu_x≠\mu_y μx=μy z ( μ ˉ x − μ ˉ y ) = ( μ ˉ x − μ ˉ y ) / σ x 2 n x + σ y 2 n y z_{(\bar\mu_x-\bar\mu_y)}=(\bar\mu_x-\bar\mu_y)/\sqrt{\frac{\sigma^2_x}{n_x}+\frac{\sigma^2_y}{n_y}} z(μˉxμˉy)=(μˉxμˉy)/nxσx2+nyσy2 2 P { Z < − 2P\{Z<- 2P{Z<I z ( μ ˉ x − μ ˉ y ) z_{(\bar\mu_x-\bar\mu_y)} z(μˉxμˉy) I } \} }保留两端
μ x < = μ y \mu_x<=\mu_y μx<=μy μ x > μ y \mu_x>\mu_y μx>μy z ( μ ˉ x − μ ˉ y ) = ( μ ˉ x − μ ˉ y ) / σ x 2 n x + σ y 2 n y z_{(\bar\mu_x-\bar\mu_y)}=(\bar\mu_x-\bar\mu_y)/\sqrt{\frac{\sigma^2_x}{n_x}+\frac{\sigma^2_y}{n_y}} z(μˉxμˉy)=(μˉxμˉy)/nxσx2+nyσy2 1 − P { Z < z ( μ ˉ x − μ ˉ y ) } 1-P\{Z<z_{(\bar\mu_x-\bar\mu_y)}\} 1P{Z<z(μˉxμˉy)}保留右端
μ x > = μ y \mu_x>=\mu_y μx>=μy μ x < μ y \mu_x<\mu_y μx<μy z ( μ ˉ x − μ ˉ y ) = ( μ ˉ x − μ ˉ y ) / σ x 2 n x + σ y 2 n y z_{(\bar\mu_x-\bar\mu_y)}=(\bar\mu_x-\bar\mu_y)/\sqrt{\frac{\sigma^2_x}{n_x}+\frac{\sigma^2_y}{n_y}} z(μˉxμˉy)=(μˉxμˉy)/nxσx2+nyσy2 P { Z < z ( μ ˉ x − μ ˉ y ) } P\{Z<z_{(\bar\mu_x-\bar\mu_y)}\} P{Z<z(μˉxμˉy)}保留左端

* Z ~ N ( 0 , 1 ) Z~N(0,1) ZN(0,1)

检验不同正态分布的均值是否相同,未知方差(Test difference mean of normal distribution with known variance)
(具体分布原理请看第4章:置信区间和样本均值的差值2.总体均值 μ A \mu_A μA, μ B \mu_B μB未知,总体方差 σ A 2 \sigma^2_A σA2 σ B 2 \sigma^2_B σB2未知.)

分别计算对应的无偏估计均值:
μ ˉ x = 1 n x ∑ i = 1 n x x i , μ ˉ y = 1 n y ∑ i = 1 n y y i \bar\mu_x=\frac{1}{n_x}\sum_{i=1}^{n_x}x_i, \bar\mu_y=\frac{1}{n_y}\sum_{i=1}^{n_y}y_i μˉx=nx1i=1nxxi,μˉy=ny1i=1nyyi
分别计算对应的无偏估计方差:
σ ˉ x 2 = 1 n x − 1 ∑ i = 1 n x ( x i − μ ˉ x ) 2 , σ ˉ y 2 = 1 n y − 1 ∑ i = 1 n y ( y i − μ ˉ y ) 2 \bar\sigma_x^2=\frac{1}{n_x-1}\sum_{i=1}^{n_x}(x_i-\bar\mu_x)^2,\bar\sigma_y^2=\frac{1}{n_y-1}\sum_{i=1}^{n_y}(y_i-\bar\mu_y)^2 σˉx2=nx11i=1nx(xiμˉx)2,σˉy2=ny11i=1ny(yiμˉy)2
情况1.未知方差相同
假如原假设成立则 μ x − μ y = 0 \mu_x-\mu_y=0 μxμy=0,所以:
μ ˉ x − μ ˉ y σ 2 n x + σ 2 n y ~ N ( 0 , 1 ) \frac{\bar\mu_x-\bar\mu_y}{\sqrt{\frac{\sigma^2}{n_x}+\frac{\sigma^2}{n_y}}}~N(0,1) nxσ2+nyσ2 μˉxμˉyN(0,1)
t-score:
t ( μ ˉ x − μ ˉ y ) = μ ˉ x − μ ˉ y σ 2 n x + σ 2 n y / χ n x + n y − 2 2 n x + n y − 2 ~ T ( n x + n y − 2 ) t_{(\bar\mu_x-\bar\mu_y)}=\frac{\bar\mu_x-\bar\mu_y}{\sqrt{\frac{\sigma^2}{n_x}+\frac{\sigma^2}{n_y}}}/\sqrt{\frac{\chi^2_{n_x+n_y-2}}{n_x+n_y-2}}~T(n_x+n_y-2) t(μˉxμˉy)=nxσ2+nyσ2 μˉxμˉy/nx+ny2χnx+ny22 T(nx+ny2)
我们令:
S p 2 = ( n x − 1 ) σ ˉ x 2 + ( n y − 1 ) σ ˉ y 2 ( n x + n y − 2 ) S_p^2=\frac{(n_x-1)\bar\sigma^2_x+(n_y-1)\bar\sigma^2_y}{(n_x+n_y-2)} Sp2=(nx+ny2)(nx1)σˉx2+(ny1)σˉy2
则:
t ( μ ˉ x − μ ˉ y ) = ( μ ˉ x − μ ˉ y ) / S p 2 ( 1 n x + 1 n y ) ~ T ( n x + n y − 2 ) t_{(\bar\mu_x-\bar\mu_y)}={(\bar\mu_x-\bar\mu_y)}/\sqrt{S^2_p(\frac{1}{n_x}+\frac{1}{n_y})}~T(n_x+n_y-2) t(μˉxμˉy)=(μˉxμˉy)/Sp2(nx1+ny1) T(nx+ny2)

原假设(H0)备择假设(H1)测试统计数据(Test statistic,t score)p值阈值
μ x = μ y \mu_x=\mu_y μx=μy μ x ≠ μ y \mu_x≠\mu_y μx=μy ( μ ˉ x − μ ˉ y ) / S p 2 ( 1 n x + 1 n y ) {(\bar\mu_x-\bar\mu_y)}/\sqrt{S^2_p(\frac{1}{n_x}+\frac{1}{n_y})} (μˉxμˉy)/Sp2(nx1+ny1) 2 P { T < − 2P\{T<- 2P{T<I t ( μ ˉ x − μ ˉ y ) t_{(\bar\mu_x-\bar\mu_y)} t(μˉxμˉy) I } \} }保留两端
μ x < = μ y \mu_x<=\mu_y μx<=μy μ x > μ y \mu_x>\mu_y μx>μy ( μ ˉ x − μ ˉ y ) / S p 2 ( 1 n x + 1 n y ) {(\bar\mu_x-\bar\mu_y)}/\sqrt{S^2_p(\frac{1}{n_x}+\frac{1}{n_y})} (μˉxμˉy)/Sp2(nx1+ny1) 1 − P { T < t ( μ ˉ x − μ ˉ y ) } 1-P\{T<t_{(\bar\mu_x-\bar\mu_y)}\} 1P{T<t(μˉxμˉy)}保留右端
μ x > = μ y \mu_x>=\mu_y μx>=μy μ x < μ y \mu_x<\mu_y μx<μy ( μ ˉ x − μ ˉ y ) / S p 2 ( 1 n x + 1 n y ) {(\bar\mu_x-\bar\mu_y)}/\sqrt{S^2_p(\frac{1}{n_x}+\frac{1}{n_y})} (μˉxμˉy)/Sp2(nx1+ny1) P { T < t ( μ ˉ x − μ ˉ y ) } P\{T<t_{(\bar\mu_x-\bar\mu_y)}\} P{T<t(μˉxμˉy)}保留左端

* T ~ T ( n x + n y − 2 ) T~T(n_x+n_y-2) TT(nx+ny2)

情况2.未知方差不同:

假如原假设成立则 μ x − μ y = 0 \mu_x-\mu_y=0 μxμy=0
μ ˉ x − μ ˉ y ~ N ( μ x − μ y = 0 , σ ˉ x 2 n x + σ ˉ y 2 n y ) \bar\mu_x-\bar\mu_y~N(\mu_x-\mu_y=0,\frac{\bar\sigma^2_x}{n_x}+\frac{\bar\sigma^2_y}{n_y}) μˉxμˉyN(μxμy=0,nxσˉx2+nyσˉy2)
z-score:
( μ ˉ x − μ ˉ y ) / σ ˉ x 2 n x + σ ˉ y 2 n y ~ N ( 0 , 1 ) ({\bar\mu_x-\bar\mu_y})/{\sqrt{\frac{\bar\sigma^2_x}{n_x}+\frac{\bar\sigma^2_y}{n_y}}}~N(0,1) (μˉxμˉy)/nxσˉx2+nyσˉy2 N(0,1)

原假设(H0)备择假设(H1)测试统计数据(Test statistic,z score)p值阈值
μ x = μ y \mu_x=\mu_y μx=μy μ x ≠ μ y \mu_x≠\mu_y μx=μy ( μ ˉ x − μ ˉ y ) / σ ˉ x 2 n x + σ ˉ y 2 n y ({\bar\mu_x-\bar\mu_y})/{\sqrt{\frac{\bar\sigma^2_x}{n_x}+\frac{\bar\sigma^2_y}{n_y}}} (μˉxμˉy)/nxσˉx2+nyσˉy2 2 P { Z < − 2P\{Z<- 2P{Z<I z ( μ ˉ x − μ ˉ y ) z_{(\bar\mu_x-\bar\mu_y)} z(μˉxμˉy) I } \} }保留两端
μ x < = μ y \mu_x<=\mu_y μx<=μy μ x > μ y \mu_x>\mu_y μx>μy ( μ ˉ x − μ ˉ y ) / σ ˉ x 2 n x + σ ˉ y 2 n y ({\bar\mu_x-\bar\mu_y})/{\sqrt{\frac{\bar\sigma^2_x}{n_x}+\frac{\bar\sigma^2_y}{n_y}}} (μˉxμˉy)/nxσˉx2+nyσˉy2 1 − P { Z < z ( μ ˉ x − μ ˉ y ) } 1-P\{Z<z_{(\bar\mu_x-\bar\mu_y)}\} 1P{Z<z(μˉxμˉy)}保留右端
μ x > = μ y \mu_x>=\mu_y μx>=μy μ x < μ y \mu_x<\mu_y μx<μy ( μ ˉ x − μ ˉ y ) / σ ˉ x 2 n x + σ ˉ y 2 n y ({\bar\mu_x-\bar\mu_y})/{\sqrt{\frac{\bar\sigma^2_x}{n_x}+\frac{\bar\sigma^2_y}{n_y}}} (μˉxμˉy)/nxσˉx2+nyσˉy2 P { Z < z ( μ ˉ x − μ ˉ y ) } P\{Z<z_{(\bar\mu_x-\bar\mu_y)}\} P{Z<z(μˉxμˉy)}保留左端

* Z ~ N ( 0 , 1 ) Z~N(0,1) ZN(0,1)

检验方差(test variance),方差,均值都未知
(具体分布原理请看第4章:置信区间和样本均值的差值2.总体均值 μ A \mu_A μA, μ B \mu_B μB未知,总体方差 σ A 2 \sigma^2_A σA2 σ B 2 \sigma^2_B σB2未知.)

∑ i = 1 n ( y i − y ˉ ) 2 σ 2 = ( n − 1 ) S 2 σ 2 ~ χ 2 ( n − 1 ) \frac{\sum_{i=1}^{n}(y_i-\bar y)^2}{\sigma^2}=\frac{(n-1)S^2}{\sigma^2}~\chi^2(n-1) σ2i=1n(yiyˉ)2=σ2(n1)S2χ2(n1)
S 2 S^2 S2为样本方差.

如果原假设正确,则 σ 2 = σ 0 2 \sigma^2=\sigma^2_0 σ2=σ02:
∑ i = 1 n ( y i − y ˉ ) 2 σ 0 2 = ( n − 1 ) S 2 σ 0 2 ~ χ 2 ( n − 1 ) \frac{\sum_{i=1}^{n}(y_i-\bar y)^2}{\sigma^2_0}=\frac{(n-1)S^2}{\sigma^2_0}~\chi^2(n-1) σ02i=1n(yiyˉ)2=σ02(n1)S2χ2(n1)
据小弟所知,好像这个验测统计数据没有名字,不像前面的官方叫z-score或者t-score,但小弟上学期间,老师喜欢叫它为c,并且因为它的分布服从n-1 自由度的卡方(chi-square)英语开头有个c,那么我们就叫它c-score吧。即 c = ( n − 1 ) S 2 σ 0 2 c=\frac{(n-1)S^2}{\sigma^2_0} c=σ02(n1)S2
但不巧的是卡方分布跟正态分布不太一样,它是x轴上才会有概率分布,并且它也不基于x轴上某点对称。那么如果原假设为 σ 2 = σ 0 2 \sigma^2=\sigma^2_0 σ2=σ02,我们算的c-score可能会导致一边在阈值以外,一边在阈值以内这种情况依旧拒绝原假设,所以我们要取最小的一端乘2作为p值,即:
p v a l u e = 2 m i n ( P { χ n − 1 2 < c } , 1 − P {   χ n − 1 2 < c } ) p_{value}=2min(P\{\chi^2_{n-1}<c\},1-P\{\ \chi^2_{n-1}<c\}) pvalue=2min(P{χn12<c},1P{ χn12<c})

原假设(H0)备择假设(H1)测试统计数据(Test statistic,c score)p值阈值
σ 2 = σ 0 2 \sigma^2=\sigma^2_0 σ2=σ02 σ 2 ≠ σ 0 2 \sigma^2≠\sigma^2_0 σ2=σ02 ( n − 1 ) S 2 σ 0 2 \frac{(n-1)S^2}{\sigma^2_0} σ02(n1)S2 2 m i n ( P { χ n − 1 2 < c } , 1 − P {   χ n − 1 2 < c } ) 2min(P\{\chi^2_{n-1}<c\},1-P\{\ \chi^2_{n-1}<c\}) 2min(P{χn12<c},1P{ χn12<c})保留两端
σ 2 < = σ 0 2 \sigma^2<=\sigma^2_0 σ2<=σ02 σ 2 > σ 0 2 \sigma^2>\sigma^2_0 σ2>σ02 ( n − 1 ) S 2 σ 0 2 \frac{(n-1)S^2}{\sigma^2_0} σ02(n1)S2 1 − P { χ n − 1 2 < c } 1-P\{\chi^2_{n-1}<c\} 1P{χn12<c}保留右端
σ 2 > = σ 0 2 \sigma^2>=\sigma^2_0 σ2>=σ02 σ 2 < σ 0 2 \sigma^2<\sigma^2_0 σ2<σ02 ( n − 1 ) S 2 σ 0 2 \frac{(n-1)S^2}{\sigma^2_0} σ02(n1)S2 P { χ n − 1 2 < c } P\{\chi^2_{n-1}<c\} P{χn12<c}保留左端

* c ~ χ 2 ( n − 1 ) c~\chi^2(n-1) cχ2(n1)

检验不同方差(test for different variance):
(具体分布原理请看第4章:置信区间估计方差的比,方差未知,均值未知.)
分别计算样本方差:
S x 2 = ∑ i = 1 n ( x i − μ ˉ x ) 2 n , S y 2 = ∑ i = 1 m ( y i − μ ˉ y ) 2 m S^2_x=\frac{\sum_{i=1}^{n}(x_i-\bar\mu_x)^2}{n}, S^2_y=\frac{\sum_{i=1}^{m}(y_i-\bar\mu_y)^2}{m} Sx2=ni=1n(xiμˉx)2,Sy2=mi=1m(yiμˉy)2
如果原假设正确,则 σ x 2 = σ y 2 \sigma^2_x=\sigma^2_y σx2=σy2:
S x 2 S y 2 ~ F ( n − 1 , m − 1 ) \frac{S^2_x}{S^2_y}~F(n-1,m-1) Sy2Sx2F(n1,m1)

据小弟所知,好像这个验测统计数据没有名字,不像前面的官方叫z-score或者t-score,我们叫它f-score吧。

f分布计算p值同理于卡方分布的p值计算,若原假设 σ x 2 = σ y 2 \sigma^2_x=\sigma^2_y σx2=σy2,那么p值为:
p = 2 m i n ( P { F n − 1 , m − 1 < f } , 1 − P { F n − 1 , m − 1 < f } ) p=2min(P\{F_{n-1,m-1}<f\},1-P\{F_{n-1,m-1}<f\}) p=2min(P{Fn1,m1<f},1P{Fn1,m1<f})

原假设(H0)备择假设(H1)测试统计数据(Test statistic,f score)p值阈值
σ x 2 = σ y 2 \sigma^2_x=\sigma^2_y σx2=σy2 σ x 2 ≠ σ y 2 \sigma^2_x≠\sigma^2_y σx2=σy2 S x 2 S y 2 \frac{S^2_x}{S^2_y} Sy2Sx2 p = 2 m i n ( P { F n − 1 , m − 1 < f } , 1 − P { F n − 1 , m − 1 < f } ) p=2min(P\{F_{n-1,m-1}<f\},1-P\{F_{n-1,m-1}<f\}) p=2min(P{Fn1,m1<f},1P{Fn1,m1<f})保留两端
σ x 2 < = σ y 2 \sigma^2_x<=\sigma^2_y σx2<=σy2 σ x 2 > σ y 2 \sigma^2_x>\sigma^2_y σx2>σy2 S x 2 S y 2 \frac{S^2_x}{S^2_y} Sy2Sx2 1 − P { F n − 1 , m − 1 < f } ) 1-P\{F_{n-1,m-1}<f\}) 1P{Fn1,m1<f})保留右端
σ x 2 > = σ y 2 \sigma^2_x>=\sigma^2_y σx2>=σy2 σ x 2 < σ y 2 \sigma^2_x<\sigma^2_y σx2<σy2 S x 2 S y 2 \frac{S^2_x}{S^2_y} Sy2Sx2 P { F n − 1 , m − 1 < f } P\{F_{n-1,m-1}<f\} P{Fn1,m1<f}保留左端

* f ~ F ( n − 1 , m − 1 ) f~F(n-1,m-1) fF(n1,m1)

检验二项式分布真参数 θ \theta θ
(具体分布原理请看第4章:置信区间估计均值(期望)例题2)
我们回顾下
计算无偏估计 θ \theta θ,似然估计,详请看第三章似然无偏估计二项式分布参数 θ \theta θ
θ ˉ = 1 n ∑ i = 1 n y i = m n \bar\theta=\frac{1}{n}\sum_{i=1}^{n}y_i=\frac{m}{n} θˉ=n1i=1nyi=nm
因为y成功为1,失败为0,m即为总的成功数目.
n为实验多少次.
当n→∞时,利用中心极限定理并且如果我们的原假设 θ = θ 0 \theta=\theta_0 θ=θ0正确,则:
θ ˉ → d N ( θ 0 , θ 0 ( 1 − θ 0 ) n ) \bar\theta→^d N(\theta_0,\frac{\theta_0(1-\theta_0)}{n}) θˉdN(θ0,nθ0(1θ0))

那么,z-score为:
( θ ˉ − θ 0 ) / θ 0 ( 1 − θ 0 ) n → d N ( 0 , 1 ) (\bar\theta-\theta_0)/\sqrt{\frac{\theta_0(1-\theta_0)}{n}}→^d N(0,1) (θˉθ0)/nθ0(1θ0) dN(0,1)

原假设(H0)备择假设(H1)测试统计数据(Test statistic,z score)p值阈值
θ = θ 0 \theta=\theta_0 θ=θ0 θ ≠ θ 0 \theta≠\theta_0 θ=θ0 ( θ ˉ − θ 0 ) / θ 0 ( 1 − θ 0 ) n (\bar\theta-\theta_0)/\sqrt{\frac{\theta_0(1-\theta_0)}{n}} (θˉθ0)/nθ0(1θ0) 2 P { Z < − 2P\{Z<- 2P{Z<I z z z I } \} }保留两端
θ < = θ 0 \theta<=\theta_0 θ<=θ0 θ > θ 0 \theta>\theta_0 θ>θ0 ( θ ˉ − θ 0 ) / θ 0 ( 1 − θ 0 ) n (\bar\theta-\theta_0)/\sqrt{\frac{\theta_0(1-\theta_0)}{n}} (θˉθ0)/nθ0(1θ0) 1 − P { Z < z } 1-P\{Z<z\} 1P{Z<z}保留右端
θ > = θ 0 \theta>=\theta_0 θ>=θ0 θ < θ 0 \theta<\theta_0 θ<θ0 ( θ ˉ − θ 0 ) / θ 0 ( 1 − θ 0 ) n (\bar\theta-\theta_0)/\sqrt{\frac{\theta_0(1-\theta_0)}{n}} (θˉθ0)/nθ0(1θ0) P { Z < z } P\{Z<z\} P{Z<z}保留左端

* Z ~ N ( 0 , 1 ) Z~N(0,1) ZN(0,1)

检验不同二项式分布参数差:
分别计算对应的无偏估计 θ \theta θ当n→∞时,利用中心极限定理:
θ ˉ x = 1 n x ∑ i = 1 n x y i = m x n x → d N ( θ x , θ x ( 1 − θ x ) n x ) \bar\theta_x=\frac{1}{n_x}\sum_{i=1}^{n_x}y_i=\frac{m_x}{n_x}→^dN(\theta_x,\frac{\theta_x(1-\theta_x)}{n_x}) θˉx=nx1i=1nxyi=nxmxdN(θx,nxθx(1θx))
θ ˉ y = 1 n y ∑ i = 1 n y y i = m y n y → d N ( θ y , θ y ( 1 − θ y ) n y ) \bar\theta_y=\frac{1}{n_y}\sum_{i=1}^{n_y}y_i=\frac{m_y}{n_y}→^dN(\theta_y,\frac{\theta_y(1-\theta_y)}{n_y}) θˉy=ny1i=1nyyi=nymydN(θy,nyθy(1θy))
那么:
θ ˉ x − θ ˉ y → d N ( θ x − θ y , θ x ( 1 − θ x ) n x + θ y ( 1 − θ y ) n y ) \bar\theta_x-\bar\theta_y→^dN(\theta_x-\theta_y,\frac{\theta_x(1-\theta_x)}{n_x}+\frac{\theta_y(1-\theta_y)}{n_y}) θˉxθˉydN(θxθy,nxθx(1θx)+nyθy(1θy))
上述公式利用了E[X-Y]=E[X]-E[Y], V[X-Y]=V[X]+V[Y],详推导请看第二章方差和期望.

又因为我们假设原假设 θ x = θ y = θ \theta_x=\theta_y=\theta θx=θy=θ成立:
那我们可以无偏估计 θ \theta θ,即:
θ y = θ x = θ ˉ p = m x + m y n x + n y \theta_y=\theta_x=\bar\theta_p=\frac{m_x+m_y}{n_x+n_y} θy=θx=θˉp=nx+nymx+my
m x m_x mx m y m_y my为对应 n x n_x nx n y n_y ny个事件里成功多少次
得:
θ ˉ x − θ ˉ y → d N ( θ x − θ y = 0 , θ ˉ p ( 1 − θ ˉ p ) ( 1 n x + 1 n y ) ) \bar\theta_x-\bar\theta_y→^dN(\theta_x-\theta_y=0,\bar\theta_p(1-\bar\theta_p)(\frac{1}{n_x}+\frac{1}{n_y})) θˉxθˉydN(θxθy=0,θˉp(1θˉp)(nx1+ny1))

那么我们的z-score,为:
z = ( θ ˉ x − θ ˉ y ) / θ ˉ p ( 1 − θ ˉ p ) ( 1 n x + 1 n y ) ~ N ( 0 , 1 ) z=(\bar\theta_x-\bar\theta_y)/\sqrt{\bar\theta_p(1-\bar\theta_p)(\frac{1}{n_x}+\frac{1}{n_y})}~N(0,1) z=(θˉxθˉy)/θˉp(1θˉp)(nx1+ny1) N(0,1)

原假设(H0)备择假设(H1)测试统计数据(Test statistic,z score)p值阈值
θ x = θ y \theta_x=\theta_y θx=θy θ x ≠ θ y \theta_x≠\theta_y θx=θy ( θ ˉ x − θ ˉ y ) / θ ˉ p ( 1 − θ ˉ p ) ( 1 n x + 1 n y ) (\bar\theta_x-\bar\theta_y)/\sqrt{\bar\theta_p(1-\bar\theta_p)(\frac{1}{n_x}+\frac{1}{n_y})} (θˉxθˉy)/θˉp(1θˉp)(nx1+ny1) 2 P { Z < − 2P\{Z<- 2P{Z<I z z z I } \} }保留两端
θ x < = θ y \theta_x<=\theta_y θx<=θy θ x > θ y \theta_x>\theta_y θx>θy ( θ ˉ x − θ ˉ y ) / θ ˉ p ( 1 − θ ˉ p ) ( 1 n x + 1 n y ) (\bar\theta_x-\bar\theta_y)/\sqrt{\bar\theta_p(1-\bar\theta_p)(\frac{1}{n_x}+\frac{1}{n_y})} (θˉxθˉy)/θˉp(1θˉp)(nx1+ny1) 1 − P { Z < z } 1-P\{Z<z\} 1P{Z<z}保留右端
θ x > = θ y \theta_x>=\theta_y θx>=θy θ x < θ y \theta_x<\theta_y θx<θy ( θ ˉ x − θ ˉ y ) / θ ˉ p ( 1 − θ ˉ p ) ( 1 n x + 1 n y ) (\bar\theta_x-\bar\theta_y)/\sqrt{\bar\theta_p(1-\bar\theta_p)(\frac{1}{n_x}+\frac{1}{n_y})} (θˉxθˉy)/θˉp(1θˉp)(nx1+ny1) P { Z < z } P\{Z<z\} P{Z<z}保留左端

* Z ~ N ( 0 , 1 ) Z~N(0,1) ZN(0,1)

测验泊松分布参数 λ \lambda λ
泊松分布的参数检验很有意思,小弟当时认为可以用检验正态分布均值,已知方差的想法来测验泊松参数,但失败了,等老师讲的时候,你才会发现,不用那么费劲很简单,利用泊松分布的含义即可.

如果我们观测的数据是X=x,在一段时间内发生x个事件,那么我们假设原假设成立,即 λ = λ 0 \lambda=\lambda_0 λ=λ0,那基于周期发生 λ 0 \lambda_0 λ0的情况下,我们观测我们的事件x个
观测比它多的情况,和少的情况对应累计的概率作为极端概率和(p值),再看是否超过我们的阈值即可:
P λ 0 { X > = x } < = α / 2 , P λ 0 { X < = x } < = α / 2 P_{\lambda_0}\{X>=x\}<=\alpha/2, P_{\lambda_0}\{X<=x\}<=\alpha/2 Pλ0{X>=x}<=α/2,Pλ0{X<=x}<=α/2
P λ 0 P_{\lambda_0} Pλ0为基于周期为 λ 0 \lambda_0 λ0的泊松分布概率.

那么p值为:
p = 2 m i n ( P λ 0 { X > = x } , P λ 0 { X < = x } ) p=2min(P_{\lambda_0}\{X>=x\},P_{\lambda_0}\{X<=x\}) p=2min(Pλ0{X>=x},Pλ0{X<=x})

原假设(H0)备择假设(H1)测试统计数据(Test statistic)p值阈值
λ = λ 0 \lambda=\lambda_0 λ=λ0 λ ≠ λ 0 \lambda≠\lambda_0 λ=λ0 x x x 2 m i n ( P λ 0 { X > = x } , P λ 0 { X < = x } ) 2min(P_{\lambda_0}\{X>=x\},P_{\lambda_0}\{X<=x\}) 2min(Pλ0{X>=x},Pλ0{X<=x})保留两端
λ < = λ 0 \lambda<=\lambda_0 λ<=λ0 λ > λ 0 \lambda>\lambda_0 λ>λ0 x x x P λ 0 { X > = x } P_{\lambda_0}\{X>=x\} Pλ0{X>=x}保留右端
λ > = λ 0 \lambda>=\lambda_0 λ>=λ0 λ < λ 0 \lambda<\lambda_0 λ<λ0 x x x P λ 0 { X < = x } P_{\lambda_0}\{X<=x\} Pλ0{X<=x}保留左端

* X ~ P o i ( λ 0 ) X~Poi(\lambda_0) XPoi(λ0)

测验不同泊松分布参数 λ \lambda λ的关系
这里有 X 1 ~ P o i ( λ 1 ) X_1~Poi(\lambda_1) X1Poi(λ1) X 2 ~ P o i ( λ 2 ) X_2~Poi(\lambda_2) X2Poi(λ2), λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2未知
现在我们要测验:
H 0 : λ 2 = c λ 1 H_0:\lambda_2=c\lambda_1 H0:λ2=cλ1
H 1 : λ 2 ≠ c λ 1 H_1:\lambda_2≠c\lambda_1 H1:λ2=cλ1
c是你猜的数值

我们把 X 1 X_1 X1个事件当成成功, X 2 X_2 X2个事件当成失败,那对应它们的泊松分布,那会有对应的概率.如果 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2真有c倍的关系的话,那 X 1 X_1 X1个事件和 X 2 X_2 X2个事件肯定有对应的变化.

那么我们利用条件概率:
P { X 1 = k ∣ X 1 + X 2 = n } P\{X_1=k|X_1+X_2=n \} P{X1=kX1+X2=n}
意味着,在所有事件中,发生 X 1 X_1 X1个事件的概率是多少.

化简该公式:
P { X 1 = k ∣ X 1 + X 2 = n } = P { X 1 = k , X 1 + X 2 = n } P { X 1 + X 2 = n } = P { X 1 = k , X 2 = n − k } P { X 1 + X 2 = n } = P { X 1 = k } P { X 2 = n − k } P { X 1 + X 2 = n } P\{X_1=k|X_1+X_2=n \}=\frac{P\{X_1=k,X_1+X_2=n\}}{P\{X_1+X_2=n\}}=\frac{P\{X_1=k,X_2=n-k\}}{P\{X_1+X_2=n\}}=\frac{P\{X_1=k\}P\{X_2=n-k\}}{P\{X_1+X_2=n\}} P{X1=kX1+X2=n}=P{X1+X2=n}P{X1=kX1+X2=n}=P{X1+X2=n}P{X1=k,X2=nk}=P{X1+X2=n}P{X1=k}P{X2=nk}

利用对应的泊松分布得到概率,代入:
P { X 1 = k } P { X 2 = n − k } P { X 1 + X 2 = n } = e x p { − λ 1 } λ 1 k k ! e x p { − λ 2 } λ 2 n − k ( n − k ) ! e x p { − ( λ 1 + λ 2 ) } ( λ 1 + λ 2 ) n n ! \frac{P\{X_1=k\}P\{X_2=n-k\}}{P\{X_1+X_2=n\}}=\frac{\frac{exp\{-\lambda_1\}\lambda^k_1}{k!} \frac{exp\{-\lambda_2\}\lambda^{n-k}_2}{(n-k)!}}{\frac{exp\{-(\lambda_1+\lambda_2)\}(\lambda_1+\lambda_2)^n}{n!}} P{X1+X2=n}P{X1=k}P{X2=nk}=n!exp{(λ1+λ2)}(λ1+λ2)nk!exp{λ1}λ1k(nk)!exp{λ2}λ2nk
上述公式分母用到了泊松分布的连加性,详看第二章概率分布。

我们接着整理上述公式:
e x p { − λ 1 } λ 1 k k ! e x p { − λ 2 } λ 2 n − k ( n − k ) ! e x p { − ( λ 1 + λ 2 ) } ( λ 1 + λ 2 ) n n ! = n ! ( n − k ) ! k ! ( λ 1 λ 1 + λ 2 ) k ( λ 2 λ 2 + λ 1 ) n − k \frac{\frac{exp\{-\lambda_1\}\lambda^k_1}{k!} \frac{exp\{-\lambda_2\}\lambda^{n-k}_2}{(n-k)!}}{\frac{exp\{-(\lambda_1+\lambda_2)\}(\lambda_1+\lambda_2)^n}{n!}}=\frac{n!}{(n-k)!k!}(\frac{\lambda_1}{\lambda_1+\lambda_2})^{k}(\frac{\lambda_2}{\lambda_2+\lambda_1})^{n-k} n!exp{(λ1+λ2)}(λ1+λ2)nk!exp{λ1}λ1k(nk)!exp{λ2}λ2nk=(nk)!k!n!(λ1+λ2λ1)k(λ2+λ1λ2)nk
看出来了么,上述公式这是什么,很明显的二项式分布.
如果原假设成立 λ 2 = c λ 1 \lambda_2=c\lambda_1 λ2=cλ1,那么我们可以把 λ 2 \lambda_2 λ2替换掉,得到:
B i n ( θ = 1 1 + c , n ) Bin(\theta=\frac{1}{1+c},n) Bin(θ=1+c1,n)
即每件事成功概率为 1 1 + c \frac{1}{1+c} 1+c1,一共n个事件。
那么同理,在这个二项式分布中,如果假设成立 λ 2 = c λ 1 \lambda_2=c\lambda_1 λ2=cλ1,那 X 1 X_1 X1个事件不能发生太多或太少,否则反对我们的原假设.

同理,我们知道二项式分布也不是对称的,那么p值为:
p = 2 m i n ( P B i n ( 1 1 + c , n ) { X > = x 1 } , P B i n ( 1 1 + c , n ) { X < = x 1 } ) p=2min(P_{Bin(\frac{1}{1+c},n)}\{X>=x_1\},P_{Bin(\frac{1}{1+c},n)}\{X<=x_1\}) p=2min(PBin(1+c1,n){X>=x1},PBin(1+c1,n){X<=x1})

原假设(H0)备择假设(H1)测试统计数据(Test statistic)p值阈值
λ 2 = c λ 1 \lambda_2=c\lambda_1 λ2=cλ1 λ 2 ≠ λ 1 \lambda_2≠\lambda_1 λ2=λ1 x 1 x_1 x1 p = 2 m i n ( P B i n ( 1 1 + c , n ) { X > = x 1 } , P B i n ( 1 1 + c , n ) { X < = x 1 } ) p=2min(P_{Bin(\frac{1}{1+c},n)}\{X>=x_1\},P_{Bin(\frac{1}{1+c},n)}\{X<=x_1\}) p=2min(PBin(1+c1,n){X>=x1},PBin(1+c1,n){X<=x1})保留两端
λ 2 < = c λ 1 \lambda_2<=c\lambda_1 λ2<=cλ1 λ 2 > c λ 1 \lambda_2>c\lambda_1 λ2>cλ1 x 1 x_1 x1 P B i n ( 1 1 + c , n ) { X > = x 1 } P_{Bin(\frac{1}{1+c},n)}\{X>=x_1\} PBin(1+c1,n){X>=x1}保留右端
λ 2 > = λ 1 \lambda_2>=\lambda_1 λ2>=λ1 λ 2 < c λ 1 \lambda_2<c\lambda_1 λ2<cλ1 x 1 x_1 x1 P B i n ( 1 1 + c , n ) { X < = x 1 } P_{Bin(\frac{1}{1+c},n)}\{X<=x_1\} PBin(1+c1,n){X<=x1}保留左端

* X ~ B i n ( 1 1 + c , n ) , X 1 + X 2 = n , X 1 = x 1 X~Bin(\frac{1}{1+c},n), X_1+X_2=n, X_1=x_1 XBin(1+c1,n),X1+X2=n,X1=x1

二.结语

辛苦各位看官和同学了,如有谬误请告知,小弟及时更改.
本章讲基本涵盖了我们通常会涉及到的所有情况,大部分题也是基于此更改,大家可以发现它们的共通点无疑两方面,找到涉及的分布,假设原假设成立。希望大家可以灵活运用,不仅明白原理加强数字的敏感度,更要明白它们背后的哲学想法,进而用理性和感性去学习,这样不仅可以帮助你做研究或项目皆易如反掌,更能在生活上为人做事也有独到的见解,做到爱自己,爱他人.
自习的同学请看Ross, S.M. (2014) Introduction to Probability and Statistics for Engineers and Scientists, 5th ed. Academic Press. 第8章

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值