逻辑哲学第四章

一. 否(Negation)

否在命题逻辑中就是将该命题拒绝,否决掉. 在语言中,相当于"不". 例如,我是人,那么这个命题加上否,就变成: 我不是人. 所以"否"在语义中,就是将该命题的True变成False,将False变成True.
即:

p¬p¬¬p(双重否定)
TFT
FTF

但有个大家很容易犯错的地方,假如有个原命题: “我是开心的”,那大家可以思考下,加上否后,A: “我不是开心的”,B:“我是不开心的”. A命题和B命题哪个是否定原命题. 答案是A命题是原否定命题. 因为原命题"我是开心的"的反面,应该是不开心,或者开心和不开心都不是. 所以应该是A命题是原否定命题,即"我不是开心的"在说我是不开心,或者开心和不开心都不是.

我们现在来看看它的在自然演绎中的双重否定的逻辑规则:
¬ ¬ A A     ¬ ¬ E \frac{¬¬A}{A} \ \ \ ¬¬E A¬¬A   ¬¬E
A ¬ ¬ A     ¬ ¬ I \frac{A}{¬¬A} \ \ \ ¬¬I ¬¬AA   ¬¬I
如果我们给了前提¬¬A,我们可以有效论证出A,如果给了A,我们可以有效论证出¬¬A.

我们现在来看看它的在自然演绎中的否定的逻辑规则:

A      ¬ A ⊥ ¬ E \frac{A \ \ \ \ ¬A}{⊥} ¬E A    ¬A¬E
X , A ⊢ ⊥ X ⊢ ¬ A ¬ I \frac{X,A⊢ ⊥ }{X ⊢ ¬A} ¬I X¬AX,A¬I
我们先看第一条逻辑,举个例子: 我是男的,我不是男的,这俩前提,我们可以有效论证出什么,是不是肯定有个是错的,即这俩命题一起看是矛盾的,所以是恒错即⊥.

现在来看第二条逻辑. 如果说,X,A⊢ ⊥,这就意味至少有一个前提肯定是错的,所以才会有效论证出恒错⊥. 那在结合第一条逻辑,是不是能说明X⊢¬A,这样才会符合¬A,A⊢ ⊥. 所以X,A⊢ ⊥有效论证了这个相继式X⊢¬A. 大家也看到了,结论相继式的前提少了个A,所以当我们要用这个逻辑的时候要消除它对应的假设前提,例如[α1]这样的.

给大家看几道例题
例1:
p ∧ ¬ ¬ q ⊢ ¬ ¬ p ∧ q p ∧ ¬¬ q ⊢ ¬¬ p ∧ q p¬¬q¬¬pq

α 1 ( 1 )    p ∧ ¬ ¬ q     A α1 (1)\ \ p ∧ ¬¬ q\ \ \ A α1(1)  p¬¬q   A
α 1 ( 2 )    p    1 ∧ E α1 (2)\ \ p \ \ 1 ∧E α1(2)  p  1E
α 1 ( 3 )    ¬ ¬ q    1 ∧ E α1 (3)\ \ ¬¬ q \ \ 1 ∧E α1(3)  ¬¬q  1E
α 1 ( 4 )    q    3 ¬ ¬ E α1 (4)\ \ q\ \ 3 ¬¬E α1(4)  q  3¬¬E
α 1 ( 5 )    ¬ ¬ p    2 ¬ ¬ I α1 (5)\ \ ¬¬ p\ \ 2 ¬¬I α1(5)  ¬¬p  2¬¬I
α 1 ( 6 )    ¬ ¬ p ∧ q    4 , 5 ∧ I α1 (6)\ \ ¬¬ p ∧ q\ \ 4, 5 ∧I α1(6)  ¬¬pq  4,5I

例2:
p → q , ¬ q ⊢ ¬ p p → q, ¬q ⊢ ¬p pq,¬q¬p
α 1 ( 1 )    p → q    A α1 (1)\ \ p → q\ \ A α1(1)  pq  A
α 2 ( 2 )    ¬ q    A α2 (2)\ \ ¬ q\ \ A α2(2)  ¬q  A
α 3 ( 3 )    p    A α3 (3)\ \ p\ \ A α3(3)  p  A
α 1 , α 3 ( 4 )    q    1 , 3 → E α1,α3 (4)\ \ q\ \ 1, 3 →E α1,α3(4)  q  1,3E
α 1 , α 2 , α 3 ( 5 )    ⊥    2 , 4 ¬ E α1,α2,α3 (5)\ \ ⊥\ \ 2,4 ¬E α1,α2,α3(5)    2,4¬E
α 1 , α 2 ( 6 )    ¬ p    5 [ α 3 ] ¬ I α1,α2 (6)\ \ ¬p\ \ 5 [α3] ¬I α1,α2(6)  ¬p  5[α3]¬I

例3:
如果今天是星期天,这里奶茶开门
这里奶茶没开门
因此今天不是星期天

¬ p → ¬ q , q ⊢ p ¬p → ¬q, q ⊢ p ¬p¬q,qp
α 1 ( 1 )    ¬ p → ¬ q    A α1 (1)\ \ ¬p → ¬q\ \ A α1(1)  ¬p¬q  A
α 2 ( 2 )    q    A α2 (2)\ \ q\ \ A α2(2)  q  A
α 3 ( 3 )    ¬ p    A α3 (3)\ \ ¬p\ \ A α3(3)  ¬p  A
α 1 , α 3 ( 4 )    ¬ q    1 , 3 → E α1,α3 (4)\ \ ¬ q\ \ 1,3 →E α1,α3(4)  ¬q  1,3E
α 1 , α 2 , α 3 ( 5 )    ⊥    2 , 4 ¬ E α1,α2,α3 (5)\ \ ⊥\ \ 2,4 ¬E α1,α2,α3(5)    2,4¬E
α 1 , α 2 ( 6 )    ¬ ¬ p    5 [ α 3 ] ¬ I α1,α2 (6)\ \ ¬¬p\ \ 5 [α3] ¬I α1,α2(6)  ¬¬p  5[α3]¬I
α 1 , α 2 ( 7 )    p    6 ¬ ¬ E α1,α2 (7)\ \ p\ \ 6 ¬¬E α1,α2(7)  p  6¬¬E

例4:
p , ¬ p ⊢ q p, ¬p ⊢ q p,¬pq
α 1 ( 1 )    p    A α1 (1)\ \ p\ \ A α1(1)  p  A
α 2 ( 2 )    ¬ p    A α2 (2)\ \ ¬p\ \ A α2(2)  ¬p  A
α 1 , α 2 ( 3 )    ⊥    1 , 2 ¬ E α1,α2 (3)\ \ ⊥\ \ 1, 2 ¬E α1,α2(3)    1,2¬E
α 1 , α 2 ( 4 )    ¬ ¬ q    3 [    ] ¬ I α1,α2 (4)\ \ ¬¬q\ \ 3 [\ \ ] ¬I α1,α2(4)  ¬¬q  3[  ]¬I
α 1 , α 2 ( 5 )    q    4 ¬ ¬ E α1,α2 (5)\ \ q\ \ 4 ¬¬E α1,α2(5)  q  4¬¬E

最后一个逻辑规则叫做RAA
X , B ⊢ A     Y , B ⊢ ¬ A X , Y , B ⊢ ⊥    ¬ E X , Y ⊢ ¬ B     ¬ I \frac{\frac{X, B ⊢ A \ \ \ Y, B ⊢ ¬A}{X,Y,B ⊢ ⊥} \ \ ¬E}{X, Y ⊢ ¬B} \ \ \ ¬I X,Y¬BX,Y,BX,BA   Y,B¬A  ¬E   ¬I

RAA: 其实就是由 ¬E和 ¬I的组合写法. 所以为了简便,我们会写成:
X , B ⊢ A     Y , B ⊢ ¬ A X , Y ⊢ ¬ B     R A A \frac{X, B ⊢ A \ \ \ Y, B ⊢ ¬A}{X, Y ⊢ ¬B} \ \ \ RAA X,Y¬BX,BA   Y,B¬A   RAA

例5:
¬ p → ¬ q ⊢ q → p ¬p→¬q ⊢q→p ¬p¬qqp
α 1 ( 1 ) ¬ p → ¬ q     A α1 (1) ¬p→¬q\ \ \ A α1(1)¬p¬q   A
α 2 ( 2 ) q     A α2 (2) q\ \ \ A α2(2)q   A
α 3 ( 3 ) ¬ p    A α3 (3) ¬p\ \ A α3(3)¬p  A
α 1 , α 3 ( 4 ) ¬ q    1 , 3 → E α1, α3 (4) ¬q\ \ 1, 3 →E α1,α3(4)¬q  1,3E
α 1 , α 2 ( 5 ) ¬ ¬ p    2 , 4 [ α 3 ] R A A α1, α2 (5) ¬¬p\ \ 2, 4 [α3] RAA α1,α2(5)¬¬p  2,4[α3]RAA
α 1 , α 2 ( 6 ) p    5 ¬ ¬ E α1, α2 (6) p\ \ 5 ¬¬E α1,α2(6)p  5¬¬E
α 1 ( 7 ) q → p    6 [ α 2 ] → I α1 (7) q→p\ \ 6 [α2] →I α1(7)qp  6[α2]I

例6:
p → r , q → ¬ r ⊢ ¬ ( p ∧ q ) p→r, q→¬r ⊢ ¬(p ∧ q) pr,q¬r¬(pq)
α 1 ( 1 ) p → r    A α1 (1) p→r\ \ A α1(1)pr  A
α 2 ( 2 ) q → ¬ r    A α2 (2) q→¬r\ \ A α2(2)q¬r  A
α 3 ( 3 ) p ∧ q    A α3 (3) p ∧ q\ \ A α3(3)pq  A
α 3 ( 4 ) p    3 ∧ E α3 (4) p\ \ 3 ∧E α3(4)p  3E
α 1 , α 3 ( 5 ) r    1 , 4 → E α1, α3 (5) r\ \ 1, 4 →E α1,α3(5)r  1,4E
α 3 ( 6 ) q    3 ∧ E α3 (6) q\ \ 3 ∧E α3(6)q  3E
α 2 , α 3 ( 7 ) ¬ r    2 , 6 → E α2, α3 (7) ¬r\ \ 2, 6 →E α2,α3(7)¬r  2,6E
α 1 , α 2 ( 8 ) ¬ ( p ∧ q )    5 , 7 [ α 3 ] R A A α1, α2 (8) ¬(p ∧ q)\ \ 5, 7 [α3] RAA α1,α2(8)¬(pq)  5,7[α3]RAA

例7:
¬ p ⊢ p → q ¬p ⊢ p→q ¬ppq
α 1 ( 1 ) ¬ p    A α1 (1) ¬p\ \ A α1(1)¬p  A
α 2 ( 2 ) p    A α2 (2) p\ \ A α2(2)p  A
α 1 , α 2 ( 3 ) ¬ ¬ q    1 , 2 [    ] R A A α1, α2 (3) ¬¬q\ \ 1, 2 [\ \ ] RAA α1,α2(3)¬¬q  1,2[  ]RAA
α 1 , α 2 ( 4 ) q    3 ¬ ¬ E α1, α2 (4) q\ \ 3 ¬¬E α1,α2(4)q  3¬¬E
α 1 ( 5 ) p → q    4 [ α 2 ] → I α1 (5) p→q\ \ 4 [α2] →I α1(5)pq  4[α2]I

二. 或(Disjunction)

举个例子,p ∨ q 有两种解读,第一种解读是包含(inclusive)的意义即: p或者q或者都是. 第二种是exclusive的意义即: p或者q,但不都是, 但第二种很少用在我们古典逻辑中.

但现实中,我们经常同时用这俩种或的含义在我们日常语言中, 例如: 你想喝茶或咖啡,这句话言下之意是茶和咖啡二选一,及我们的exclusive 的或含义. 例如: 你想继续点菜或着买单,这言下之意是,你也可以继续点菜并且买单,不能说,你点菜了,但不想买单,单还是要买的不管你点不点,所以这是包含(inclusive)或含义.

因为在古典逻辑中,我们经常使用包含或含义. 如果包含或含义 例如p ∨ q 是对的即True,那么意味着至少有一个是对的,即p或者q,当然了你可以说p和q都是对的.

我们来看看它的自然演绎中的逻辑用法.

A A ∨ B ∨ I \frac{A}{A∨B} ∨I ABAI
B A ∨ B ∨ I \frac{B}{A∨B} ∨I ABBI

上述∨I逻辑在阐述包含或含义,举个例子如果有A 条件,可以有效论证出A∨B, 它相当于 X ⊢ A X ⊢ A ∨ B ∨ I \frac{X⊢A}{X⊢A∨B} ∨I XABXAI

接下来我们来讨论下 ∨E的用法,首先举个例子:

某个数字 x x x,是奇数或者偶数
如果 x x x是奇数,那么 x 2 + x x^2+x x2+x是偶数
如果 x x x是偶数,那么 x 2 + x x^2+x x2+x是偶数
因此 x 2 + x x^2+x x2+x是偶数

上述例子其实在说:
X ⊢ A ∨ B          Y ⊢ A → C         Z ⊢ B → C X , Y , Z ⊢ C X , Y , Z ⊢ C \frac{X ⊢ A ∨ B \ \ \ \ \ \ \ \ Y ⊢ A → C \ \ \ \ \ \ \ \\ Z ⊢ B → C X, Y, Z ⊢ C }{X, Y, Z ⊢ C} X,Y,ZCXAB        YAC       ZBCX,Y,ZC

我们可以将 Y ⊢ A → C Y ⊢ A → C YAC Z ⊢ B → C Z ⊢ B → C ZBC换成 Y , A ⊢ C Y ,A ⊢ C Y,AC Z , B ⊢ C Z,B ⊢ C Z,BC,那么该公式的正规写法为:
X ⊢ A ∨ B          Y , A ⊢ C         Z , B ⊢ C X , Y , Z ⊢ C ∨ E \frac{X ⊢ A ∨ B \ \ \ \ \ \ \ \ Y,A ⊢ C \ \ \ \ \ \ \ \\ Z,B ⊢ C}{X, Y, Z ⊢ C}∨E X,Y,ZCXAB        Y,AC       Z,BCE

所以我们从上述自然演绎的∨E逻辑公式种发现,前提相继式 X ⊢ A ∨ B          Y , A ⊢ C         Z , B ⊢ C X ⊢ A ∨ B \ \ \ \ \ \ \ \ Y,A ⊢ C \ \ \ \ \ \ \ \\ Z,B ⊢ C XAB        Y,AC       Z,BC 要把前提 A , B A,B A,B消掉,且前提 A , B A,B A,B要用在 X ⊢ A ∨ B X ⊢ A ∨ B XAB种,这样才会有效推出相继式 X , Y , Z ⊢ C X, Y, Z ⊢ C X,Y,ZC.

给大家个例子,来感受下

p ∧ ( q ∨ r ) ⊢ ( p ∧ q ) ∨ ( p ∧ r ) p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) p(qr)(pq)(pr)
α 1 ( 1 )    p ∧ ( q ∨ r )    A α1 (1)\ \ p ∧ (q ∨ r)\ \ A α1(1)  p(qr)  A
α 1 ( 2 )    p      1 ∧ E α1 (2)\ \ p \ \ \ \ 1 ∧E α1(2)  p    1E
α 1 ( 3 )    q ∨ r    1 ∧ E α1 (3)\ \ q ∨ r \ \ 1 ∧E α1(3)  qr  1E
α 2 ( 4 )    q    A α2 (4)\ \ q\ \ A α2(4)  q  A
α 1 , α 2 ( 5 )    p ∧ q    2 , 4 ∧ I α1,α2 (5)\ \ p ∧ q \ \ 2, 4 ∧I α1,α2(5)  pq  2,4I
α 1 , α 2 ( 6 )    ( p ∧ q ) ∨ ( p ∧ r )    5 ∨ I α1,α2 (6)\ \ (p ∧ q) ∨ (p ∧ r) \ \ 5 ∨I α1,α2(6)  (pq)(pr)  5I
α 3 ( 7 )    r    A α3 (7)\ \ r \ \ A α3(7)  r  A
α 1 , α 3 ( 8 )    p ∧ r    2 , 7 ∧ I α1,α3 (8)\ \ p ∧ r \ \ 2, 7 ∧I α1,α3(8)  pr  2,7I
α 1 , α 3 ( 9 )    ( p ∧ q ) ∨ ( p ∧ r )    8 ∨ I α1,α3 (9)\ \ (p ∧ q) ∨ (p ∧ r) \ \ 8 ∨I α1,α3(9)  (pq)(pr)  8I
α 1 ( 10 )    ( p ∧ q ) ∨ ( p ∧ r )    3 , 6 [ α 2 ] , 9 [ α 3 ] ∨ E α1 (10)\ \ (p ∧ q) ∨ (p ∧ r) \ \ 3, 6 [α2], 9 [α3] ∨E α1(10)  (pq)(pr)  3,6[α2],9[α3]E

⊢ p ∨ ¬ p ⊢p ∨ ¬p p¬p
α 1 ( 1 ) ¬ ( p ∨ ¬ p )     A α1 (1) ¬(p ∨ ¬p)\ \ \ A α1(1)¬(p¬p)   A
α 2 ( 2 ) p     A α2 (2) p\ \ \ A α2(2)p   A
α 2 ( 3 ) p ∨ ¬ p     2 ∨ I α2 (3) p ∨ ¬p\ \ \ 2 ∨I α2(3)p¬p   2I
α 1 ( 4 ) ¬ p     1 , 3 [ α 2 ] R A A α1 (4) ¬p\ \ \ 1, 3 [α2] RAA α1(4)¬p   1,3[α2]RAA
α 1 ( 5 ) p ∨ ¬ p     4 ∨ I α1 (5) p ∨ ¬p\ \ \ 4 ∨I α1(5)p¬p   4I
( 6 ) ¬ ¬ ( p ∨ ¬ p )     1 , 5 [ α 1 ] R A A (6) ¬¬(p ∨ ¬p)\ \ \ 1, 5 [α1] RAA (6)¬¬(p¬p)   1,5[α1]RAA
( 7 ) p ∨ ¬ p     6 ¬ ¬ E (7) p ∨ ¬p\ \ \ 6 ¬¬E (7)p¬p   6¬¬E

还记得小弟之前讲自然演绎不一致的地方么, ⊢ p ∨ ¬ p ⊢p ∨ ¬p p¬p我们是不是一眼就能看出他是对的,但自然演绎却用了7个步骤来证明,自然演绎是根据我们的逻辑具象化的,理应需要很少的自然演绎步骤来证明,因为我们逻辑一眼就能知道 ⊢ p ∨ ¬ p ⊢p ∨ ¬p p¬p是对的. 为了解释不一致,根岑同学用相继式演算来说明这个问题,小弟后续会为大家介绍相继式演算.

到此,我们已经讲完了所有命题逻辑的自然演绎的规则,即相关连接词的逻辑规则,小弟在结语中会给大家一些例题来练练手,连接词的语言哲学其实很复杂很烧脑,小弟其实并没有过深入的去讲解,主要为大家讲解自然演绎关于命题逻辑的算法,想更深入了解的同学,可以去看小弟哲学逻辑第一章推荐的链接笔记.

下章开始,小弟会分析语义树的内容,是另外一种解相继式论证的方法.但在结束之前,小弟给大家聊聊相继式背后的一些知识.

三. 理论(Theorems)

理论,这个知识,小弟在前面几章已经有提过,在此还是想写几笔.理论的公式写成:
⊢ A ⊢ A A

理论大家也可以认为,即前提是空的,单纯的一句恒对结论.

⊢ A → B ≡ A ⊢ B ⊢ A→B ≡A⊢B ABAB

上述 ⊢ A → B ⊢ A→B AB是个理论相继式, A ⊢ B A⊢B AB就是一个普通相继式,理论相继式和普通相继式之间的转换,就靠这个→.

小弟来给大家举个例子,叫大家明白什么是理论:
A: 某多边形是三角形
B:某多边形内角和180度
A→B: 如果某多边形是三角形,那么这个多边形内角和180度.

假如你在做题,知道A,那么你下一行是不是可以直接用理论 ⊢ A → B ⊢ A→B AB,就是A→B: 如果某多边形是三角形,那么这个多边形内角和180度.这个理论就可以直接用. 当然了有些同学肯定不服这个理论,于是开始证明这个理论,其实他就是在证明 A ⊢ B A⊢B AB这个东西是否有效论证,即为啥某多边形是三角形,那么该多边形内角和180度. 于是他会写很多步骤来证明它,相当于我们的自然演绎.当他发现确实 A ⊢ B A⊢B AB这个东西没毛病,他想以后就直接用,他用的其实是 ⊢ A → B ⊢ A→B AB这个理论.

四. 弱化(weakening)

如果我们有 X ⊢ A X ⊢ A XA,我们随便在加个比 X X X更大前提条件集合 Y Y Y,或者一些没用前提条件集合,他是不是还是可以有效论证出 A A A, 即 X , Y ⊢ A X,Y⊢ A X,YA. 这个其实是单调性(monotonicity),小弟在第一章有提到. 当然了,我们可以提取一个公式 B B B Y Y Y前提集合里,那么我们依然可以有效论证出 A A A,即 X , B ⊢ A X,B ⊢ A X,BA.

现在,我们可以利用理论定义来对 X , B ⊢ A X,B ⊢ A X,BA进行改变,得到 X ⊢ B → A X⊢B→ A XBA.

当然了,我们也可以用自然演绎中连接词 → I →I I的逻辑规则来证明 X ⊢ B → A X⊢B→ A XBA是有效论证的.即 [    ] → A [\ \ ]→ A [  ]A无中生有,不消除任何前提,然后在结论相继式中给他个 B B B,也就是说如果我们有 X ⊢ A X ⊢ A XA,利用 → I →I I,可以得到 X ⊢ B → A X⊢B→ A XBA,或者利用理论定义得到 X ⊢ B → A X⊢B→ A XBA.

现在我们将 X ⊢ B → A X⊢B→ A XBA带到我们日常语言中来看看是不是符合我们逻辑.

X X X:我是个男生

A A A:我是个人

B B B:今天星期天

X ⊢ A X⊢A XA:我是个男生能够有效论证出我是个人.

⊢ X → A ⊢X→A XA:理论如果我是个男生,那么我是个人.

我们会发现一个很有意思的事情, X ⊢ B → A X⊢B→ A XBA变成了: 我是个男生能够有效论证出: 如果今天是星期天,那么我是个人. 这个结论相继式是不是很令我们费解,是不是不太明白. 其实它说的没错,只不过将我们的语义弱化了.它其实是在说,[即使]如果今天是星期天,[那么]我[依然]是个人. [ ]里的就是弱化了一些语义. 所以为了克服这个bug,克服自然演绎运用古典逻辑规则使语义会弱化推出的结论,使我们读不懂或者很费解推出的结论. 我们会用另外一套逻辑叫做相关逻辑. 顺便说一句,小弟目前分析的自然演绎中的逻辑规则均是古典逻辑.相关逻辑相当于量子物理,古典逻辑相当于经典物理,就是不同领域用不同的一套逻辑罢了,小弟后续会为大家讲解相关逻辑,并为大家介绍一些很著名的古典逻辑悖论,相关逻辑可以修补这些悖论.

四. 缩写(Contraction)

如果我们见到,X,A,A ⊢ B, 那么我们可以缩写成X,A ⊢ B. X 是一个前提公式集合,例如X={A,B,C,C,D},那么进行缩写,可以得到X={A,B,C,D}.

五. 结语

下一章,小弟来介绍用语义树来证明命题逻辑相继式,例如, p ∧ ¬ ¬ q ⊢ ¬ ¬ p ∧ q p ∧ ¬¬ q ⊢ ¬¬ p ∧ q p¬¬q¬¬pq,除了用自然推演,还可以用语义树来证明.

若有谬误请指出,感谢

最后给大家一些命题逻辑相继式(从易到难),大家可以自行练习下.
Q1:
( p ∨ q ) → r ⊢ ( p → r ) ∧ ( q → r ) (p ∨ q)→r ⊢ (p→r) ∧ (q→r) (pq)r(pr)(qr)
α 1 ( 1 ) ( p ∨ q ) → r      A α1 (1) (p ∨ q)→r\ \ \ \ A α1(1)(pq)r    A
α 2 ( 2 ) p      A α2 (2) p \ \ \ \ A α2(2)p    A
α 2 ( 3 ) p ∨ q      2 ∨ I α2 (3) p ∨ q\ \ \ \ 2 ∨I α2(3)pq    2I
α 1 , α 2 ( 4 ) r      1 , 3 → E α1, α2 (4) r\ \ \ \ 1, 3 →E α1,α2(4)r    1,3E
α 1 ( 5 ) p → r       4 [ α 2 ] → I α1 (5) p→r \ \ \ \ \ 4 [α2] →I α1(5)pr     4[α2]I
α 6 ( 6 ) q      A α6 (6) q\ \ \ \ A α6(6)q    A
α 6 ( 7 ) p ∨ q      6 ∨ I α6 (7) p ∨ q \ \ \ \ 6 ∨I α6(7)pq    6I
α 1 , α 6 ( 8 ) r      1 , 7 → E α1, α6 (8) r \ \ \ \ 1, 7 →E α1,α6(8)r    1,7E
α 1 ( 9 ) q → r      8 [ α 6 ] → I α1 (9) q→r \ \ \ \ 8 [α6] →I α1(9)qr    8[α6]I
α 1 ( 10 ) ( p → r ) ∧ ( q → r )     5 , 9 ∧ I α1 (10) (p→r) ∧ (q→r)\ \ \ 5, 9 ∧I α1(10)(pr)(qr)   5,9I

Q2:
( p ∧ q ) → s , ( p ∧ s ) → r ⊢ ( q ∧ ¬ r ) → ¬ p (p ∧ q)→s, (p ∧ s)→r ⊢ (q ∧ ¬r)→¬p (pq)s,(ps)r(q¬r)¬p
α 1 ( 1 ) ( p ∧ q ) → s      A α1 (1) (p ∧ q)→s \ \ \ \ A α1(1)(pq)s    A
α 2 ( 2 ) ( p ∧ s ) → r      A α2 (2) (p ∧ s)→r\ \ \ \ A α2(2)(ps)r    A
α 3 ( 3 ) q ∧ ¬ r      A α3 (3) q ∧ ¬r\ \ \ \ A α3(3)q¬r    A
α 4 ( 4 ) p      A α4 (4) p\ \ \ \ A α4(4)p    A
α 3 ( 5 ) q      3 ∧ E α3 (5) q\ \ \ \ 3 ∧E α3(5)q    3E
α 3 , α 4 ( 6 ) p ∧ q      4 , 5 ∧ I α3, α4 (6) p ∧ q\ \ \ \ 4, 5 ∧I α3,α4(6)pq    4,5I
α 1 , α 3 , α 4 ( 7 ) s      1 , 6 → E α1, α3, α4 (7) s\ \ \ \ 1, 6 →E α1,α3,α4(7)s    1,6E
α 1 , α 3 , α 4 ( 8 ) p ∧ s      4 , 7 ∧ I α1, α3, α4 (8) p ∧ s \ \ \ \ 4, 7 ∧I α1,α3,α4(8)ps    4,7I
α 1 , α 2 , α 3 , α 4 ( 9 ) r      2 , 8 → E α1, α2, α3, α4 (9) r\ \ \ \ 2, 8 →E α1,α2,α3,α4(9)r    2,8E
α 3 ( 10 ) ¬ r     3 ∧ E α3 (10) ¬r \ \ \ 3 ∧E α3(10)¬r   3E
α 1 , α 2 , α 3 ( 11 ) ¬ p      9 , 10 [ α 4 ] R A A α1, α2, α3 (11) ¬p\ \ \ \ 9, 10 [α4] RAA α1,α2,α3(11)¬p    9,10[α4]RAA
α 1 , α 2 ( 12 ) ( q ∧ ¬ r ) → ¬ p      11 [ α 3 ] → I α1, α2 (12) (q ∧ ¬r)→¬p\ \ \ \ 11 [α3] →I α1,α2(12)(q¬r)¬p    11[α3]I

Q3:
p → ¬ q , p → ¬ r ⊢ ( q ∨ r ) → ¬ p p→¬q, p→¬r ⊢ (q ∨ r)→¬p p¬q,p¬r(qr)¬p
α 1 ( 1 ) p → ¬ q      A α1 (1) p→¬q \ \ \ \ A α1(1)p¬q    A
α 2 ( 2 ) p → ¬ r     A α2 (2) p→¬r\ \ \ A α2(2)p¬r   A
α 3 ( 3 ) q ∨ r     A α3 (3) q ∨ r\ \ \ A α3(3)qr   A
α 4 ( 4 ) p     A α4 (4) p\ \ \ A α4(4)p   A
α 5 ( 5 ) q     A α5 (5) q \ \ \ A α5(5)q   A
α 1 , α 4 ( 6 ) ¬ q     1 , 4 → E α1, α4 (6) ¬q \ \ \ 1, 4 →E α1,α4(6)¬q   1,4E
α 1 , α 5 ( 7 ) ¬ p     5 , 6 [ α 4 ] R A A α1, α5 (7) ¬p \ \ \ 5, 6 [α4] RAA α1,α5(7)¬p   5,6[α4]RAA
α 8 ( 8 ) r     A α8 (8) r\ \ \ A α8(8)r   A
α 2 , α 4 ( 9 ) ¬ r     2 , 4 → E α2, α4 (9) ¬r\ \ \ 2, 4 →E α2,α4(9)¬r   2,4E
α 2 , α 8 ( 10 ) ¬ p      8 , 9 [ α 4 ] R A A α2, α8 (10) ¬p\ \ \ \ 8, 9 [α4] RAA α2,α8(10)¬p    8,9[α4]RAA
α 1 , α 2 , α 3 ( 11 ) ¬ p     3 , 7 [ α 5 ] , 10 [ α 8 ] ∨ E α1, α2, α3 (11) ¬p\ \ \ 3, 7 [α5], 10 [α8] ∨E α1,α2,α3(11)¬p   3,7[α5],10[α8]E
α 1 , α 2 ( 12 ) ( q ∨ r ) → ¬ p      11 [ α 3 ] → I α1, α2 (12) (q ∨ r)→¬p\ \ \ \ 11 [α3] →I α1,α2(12)(qr)¬p    11[α3]I

Q4:
p → ( q ∨ r ) ⊢ ( p → q ) ∨ ( p → r ) p→(q ∨ r) ⊢ (p→q) ∨ (p→r) p(qr)(pq)(pr)
α 1 ( 1 ) p → ( q ∨ r )     A α1 (1) p→(q ∨ r)\ \ \ A α1(1)p(qr)   A
α 2 ( 2 ) ¬ ( ( p → q ) ∨ ( p → r ) )     A α2 (2) ¬((p→q) ∨ (p→r))\ \ \ A α2(2)¬((pq)(pr))   A
α 3 ( 3 ) p      A α3 (3) p \ \ \ \ A α3(3)p    A
α 1 , α 3 ( 4 ) q ∨ r      1 , 3 → E α1, α3 (4) q ∨ r\ \ \ \ 1, 3 →E α1,α3(4)qr    1,3E
α 5 ( 5 ) q     A α5 (5) q \ \ \ A α5(5)q   A
α 5 ( 6 ) p → q     5 [    ] → I α5 (6) p→q\ \\ \ 5 [\ \ ] →I α5(6)pq  5[  ]I
α 5 ( 7 ) ( p → q ) ∨ ( p → r )     6 ∨ I α5 (7) (p→q) ∨ (p→r) \ \ \ 6 ∨I α5(7)(pq)(pr)   6I
α 8 ( 8 ) r      A α8 (8) r \ \ \ \ A α8(8)r    A
α 8 ( 9 ) p → r      8 [    ] → I α8 (9) p→r \ \ \ \ 8 [\ \ ] →I α8(9)pr    8[  ]I
α 8 ( 10 ) ( p → q ) ∨ ( p → r )     9 ∨ I α8 (10) (p→q) ∨ (p→r)\ \ \ 9 ∨I α8(10)(pq)(pr)   9I
α 1 , α 3 ( 11 ) ( p → q ) ∨ ( p → r )     4 , 7 [ α 5 ] , 10 [ α 8 ] ∨ E α1, α3 (11) (p→q) ∨ (p→r) \ \ \ 4, 7 [α5], 10 [α8] ∨E α1,α3(11)(pq)(pr)   4,7[α5],10[α8]E
α 1 , α 2 , α 3 ( 12 ) ¬ ¬ q     2 , 11 [ ] R A A α1, α2, α3 (12) ¬¬q \ \ \ 2, 11 [ ] RAA α1,α2,α3(12)¬¬q   2,11[]RAA
α 1 , α 2 , α 3 ( 13 ) q      12 ¬ ¬ E α1, α2, α3 (13) q \ \\ \ \ 12 ¬¬E α1,α2,α3(13)q   12¬¬E
α 1 , α 2 ( 14 ) p → q      13 [ α 3 ] → I α1, α2 (14) p→q \ \ \ \ 13 [α3] →I α1,α2(14)pq    13[α3]I
α 1 , α 2 ( 15 ) ( p → q ) ∨ ( p → r )       14 ∨ I α1, α2 (15) (p→q) ∨ (p→r)\ \ \ \ \ 14 ∨I α1,α2(15)(pq)(pr)     14I
α 1 ( 16 ) ¬ ¬ ( ( p → q ) ∨ ( p → r ) )      2 , 15 [ α 2 ] α1 (16) ¬¬((p→q) ∨ (p→r)) \ \ \ \ 2, 15 [α2] α1(16)¬¬((pq)(pr))    2,15[α2]

Q5:
¬ p → ( q ∨ r ) ⊢ ¬ q → ( p ∨ r ) ¬p→(q ∨ r) ⊢ ¬q→(p ∨ r) ¬p(qr)¬q(pr)
α 1 ( 1 ) ¬ p → ( q ∨ r )      A α1 (1) ¬p→(q ∨ r)\ \ \ \ A α1(1)¬p(qr)    A
α 2 ( 2 ) ¬ q      A α2 (2) ¬q \ \ \ \ A α2(2)¬q    A
α 3 ( 3 ) ¬ ( p ∨ r )       A α3 (3) ¬(p ∨ r)\ \ \ \ \ A α3(3)¬(pr)     A
α 4 ( 4 ) p      A α4 (4) p \ \ \ \ A α4(4)p    A
α 4 ( 5 ) p ∨ r 4      ∨ I α4 (5) p ∨ r 4\ \ \ \ ∨I α4(5)pr4    I
α 3 ( 6 ) ¬ p      3 , 5 [ α 4 ] R A A α3 (6) ¬p\ \ \ \ 3, 5 [α4] RAA α3(6)¬p    3,5[α4]RAA
α 1 , α 3 ( 7 ) q ∨ r       1 , 6 → E α1, α3 (7) q ∨ r\ \ \ \ \ 1, 6 →E α1,α3(7)qr     1,6E
α 8 ( 8 ) q      A α8 (8) q\ \ \ \ A α8(8)q    A
α 2 , α 8 ( 9 ) ¬ ¬ ( p ∨ r )       2 , 8 [    ] R A A α2, α8 (9) ¬¬(p ∨ r)\ \ \ \ \ 2, 8 [\ \ ] RAA α2,α8(9)¬¬(pr)     2,8[  ]RAA
α 2 , α 8 ( 10 ) p ∨ r      9 ¬ ¬ E α2, α8 (10) p ∨ r\ \ \ \ 9 ¬¬E α2,α8(10)pr    9¬¬E
α 5 ( 11 ) r       A α5 (11) r\ \ \ \ \ A α5(11)r     A
α 5 ( 12 ) p ∨ r      11 ∨ I α5 (12) p ∨ r\ \ \ \ 11 ∨I α5(12)pr    11I
α 1 , α 2 , α 3 ( 13 ) p ∨ r      7 , 10 [ α 8 ] , 12 [ α 5 ] ∨ E α1, α2, α3 (13) p ∨ r\ \ \ \ 7, 10 [α8], 12 [α5] ∨E α1,α2,α3(13)pr    7,10[α8],12[α5]E
α 1 , α 2 ( 14 ) ¬ ¬ ( p ∨ r )      3 , 13 [ α 3 ] R A A α1, α2 (14) ¬¬(p ∨ r)\ \ \ \ 3, 13 [α3] RAA α1,α2(14)¬¬(pr)    3,13[α3]RAA
α 1 , α 2 ( 15 ) p ∨ r      14 ¬ ¬ E α1, α2 (15) p ∨ r\ \ \ \ 14 ¬¬E α1,α2(15)pr    14¬¬E
α 1 ( 16 ) ¬ q → ( p ∨ r )      15 [ α 2 ] → I α1 (16) ¬q→(p ∨ r)\ \ \ \ 15 [α2] →I α1(16)¬q(pr)    15[α2]I

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值