BigCowPeking

实践是检验真理的唯一标准

排序:
默认
按更新时间
按访问量
RSS订阅

深度学习剖根问底:各种Loss大总结

1. 指数损失函数(Adaboost) 学过Adaboost算法的人都知道,它是前向分步加法算法的特例,是一个加和模型,损失函数就是指数函数。在Adaboost中,经过m此迭代之后,可以得到fm(x): Adaboost每次迭代时的目的是为了找到最小化下列式子时的参数α和G: 而指数...

2018-09-08 17:55:33

阅读数 2187

评论数 1

目标检测之loss函数:softmax详细的梯度求导

这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流!softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax...

2018-06-25 21:32:15

阅读数 1446

评论数 0

目标检测之Loss:L2范式和Loss函数

机器学习中的范数规则化之L0、L1、L2范数及loss函数监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。  最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防...

2018-06-21 22:24:00

阅读数 4155

评论数 0

目标检测之Loss函数:Logistic Regression的梯度推导

逻辑回归模型(Logistic Regression, LR)基础逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本文主要详述逻辑回归模型的基...

2018-06-09 17:17:14

阅读数 733

评论数 0

目标检测之Loss:Logistic逻辑回归loss

2018-06-09 16:17:45

阅读数 649

评论数 0

目标检测之Loss:softmaxLoss反向传播

    推导梯度,其实是非常简单的,就是一个复合函数求导,不要害怕,高数那点东西够用了,链式法则也很简单的;博主自己推导了一下softmaxLoss,搜了一大遍,网上没有完整的推导,可能太简单了,自己就推导了一下,详细的过程见下文:   梯度更新的过程其实就是前向计算出来的值,反向的时候就可以直接...

2018-04-03 21:24:04

阅读数 623

评论数 0

目标检测之Loss:FasterRCNN中的SmoothL1Loss

多任务损失(来自Fast R-CNN) multi-task数据结构Fast R-CNN网络有两个同级输出层(cls score和bbox_prdict层),都是全连接层,称为multi-task。① clsscore层:用于分类,输出k+1维数组p,表示属于k类和背景的概率。对每个RoI(Reg...

2018-04-03 21:12:37

阅读数 11005

评论数 2

目标检测之Loss:Center Loss梯度更新

转载:https://blog.csdn.net/u014380165/article/details/76946339最近几年网络效果的提升除了改变网络结构外,还有一群人在研究损失层的改进,这篇博文要介绍的就是较为新颖的center loss。center loss来自ECCV2016的一篇论文...

2018-03-31 21:36:57

阅读数 950

评论数 0

目标检测之Loss:softmaxLoss和Cross Entropy的讲解

最大似然估计:就是什么样的参数才能使我们观测的这组数据的概率最大化.;我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非...

2018-03-31 21:24:10

阅读数 1496

评论数 0

目标检测之Loss:softmaxLoss函数代码解读

 在caffe中softmaxwithLoss是由两部分组成,softmax+Loss组成,其实主要就是为了caffe框架的可扩展性。  表达式(1)是softmax计算表达式,(2)是sfotmaxLoss的计算损失表达。在caffe中是单独的计算每层的输入和输出,然后再进行向后传递data结果...

2018-03-31 21:15:07

阅读数 297

评论数 0

目标检测之loss:softmax Loss 梯度推导

1softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 si = si/(si+sj+...sk)更形象的如下图表示:softmax...

2018-03-31 21:09:14

阅读数 1536

评论数 0

目标检测中Loss函数:Focal Loss反向求导

focal Loss梯度求导的链式法则:转载: https://blog.csdn.net/linmingan/article/details/77885832     反向传播网络的工作过程是首先进行信息的前馈,计算出各个节点的输入输出值,网络最终的输出,并把各个节点的输入输出值进行存储,利用损...

2018-03-30 21:51:42

阅读数 654

评论数 0

机器学习:BP神经网络梯度更新

1:BP神经网络梯度更新每一层的权值更新的详细步骤:详细的步骤:主要是写的太好了,我就不在编辑公式了!

2018-02-20 18:09:06

阅读数 783

评论数 2

目标检测:损失函数之SmoothL1Loss

fasterRCNN中的RPN的回归框的loss计算方法 再次深入的解读SmoothL1Loss损失函数: fasterRCNN中SmoothL1Loss的详解  

2018-02-04 12:40:11

阅读数 17513

评论数 6

提示
确定要删除当前文章?
取消 删除
关闭
关闭