目标检测之Loss函数
文章平均质量分 87
BigCowPeking
追求卓越,永不放弃
展开
-
目标检测中Loss函数:Focal Loss反向求导
focal Loss梯度求导的链式法则:转载: https://blog.csdn.net/linmingan/article/details/77885832 反向传播网络的工作过程是首先进行信息的前馈,计算出各个节点的输入输出值,网络最终的输出,并把各个节点的输入输出值进行存储,利用损失函数求出最终的损失,然后进行损失的反向传播,在损失反向传播的过程中实际上是对各个节点的输出进行求梯度...转载 2018-03-30 21:51:42 · 2852 阅读 · 0 评论 -
目标检测之loss函数:softmax详细的梯度求导
这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流!softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是更形象的如下图表示:softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作...转载 2018-06-25 21:32:15 · 2882 阅读 · 0 评论 -
目标检测之Loss函数:Logistic Regression的梯度推导
逻辑回归模型(Logistic Regression, LR)基础逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化、逻辑回归与计算广告学等,请关注后续文章。1 逻辑回归模型 回归是一种...转载 2018-06-09 17:17:14 · 3065 阅读 · 0 评论 -
目标检测之Loss:Logistic逻辑回归loss
转载 2018-06-09 16:17:45 · 3929 阅读 · 0 评论 -
目标检测之Loss:L2范式和Loss函数
机器学习中的范数规则化之L0、L1、L2范数及loss函数监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。 最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。多么简约的哲学啊!因为参数太多,会导致我们的模型复杂度上升,容易过...转载 2018-06-21 22:24:00 · 8248 阅读 · 0 评论 -
目标检测:损失函数之SmoothL1Loss
fasterRCNN中的RPN的回归框的loss计算方法再次深入的解读SmoothL1Loss损失函数:fasterRCNN中SmoothL1Loss的详解转载 2018-02-04 12:40:11 · 37591 阅读 · 8 评论 -
目标检测之Loss:softmaxLoss反向传播
推导梯度,其实是非常简单的,就是一个复合函数求导,不要害怕,高数那点东西够用了,链式法则也很简单的;博主自己推导了一下softmaxLoss,搜了一大遍,网上没有完整的推导,可能太简单了,自己就推导了一下,详细的过程见下文: 梯度更新的过程其实就是前向计算出来的值,反向的时候就可以直接使用,链式法则就是这样用的;...原创 2018-04-03 21:24:04 · 2113 阅读 · 0 评论 -
目标检测之Loss:FasterRCNN中的SmoothL1Loss
多任务损失(来自Fast R-CNN) multi-task数据结构Fast R-CNN网络有两个同级输出层(cls score和bbox_prdict层),都是全连接层,称为multi-task。① clsscore层:用于分类,输出k+1维数组p,表示属于k类和背景的概率。对每个RoI(Region of Interesting)输出离散型概率分布通常,p由k+1类的全连接层利用softmax...转载 2018-04-03 21:12:37 · 17787 阅读 · 2 评论 -
目标检测之Loss:Center Loss梯度更新
转载:https://blog.csdn.net/u014380165/article/details/76946339最近几年网络效果的提升除了改变网络结构外,还有一群人在研究损失层的改进,这篇博文要介绍的就是较为新颖的center loss。center loss来自ECCV2016的一篇论文:A Discriminative Feature Learning Approach for Dee...转载 2018-03-31 21:36:57 · 2389 阅读 · 0 评论 -
目标检测之Loss:softmaxLoss和Cross Entropy的讲解
最大似然估计:就是什么样的参数才能使我们观测的这组数据的概率最大化.;我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cross...转载 2018-03-31 21:24:10 · 3513 阅读 · 0 评论 -
目标检测之Loss:softmaxLoss函数代码解读
在caffe中softmaxwithLoss是由两部分组成,softmax+Loss组成,其实主要就是为了caffe框架的可扩展性。 表达式(1)是softmax计算表达式,(2)是sfotmaxLoss的计算损失表达。在caffe中是单独的计算每层的输入和输出,然后再进行向后传递data结果和向前传递diff的结果。 caffe中softmax的计算: 如上所示;在resha...转载 2018-03-31 21:15:07 · 1151 阅读 · 0 评论 -
机器学习:BP神经网络梯度更新
1:BP神经网络梯度更新每一层的权值更新的详细步骤:详细的步骤:主要是写的太好了,我就不在编辑公式了!原创 2018-02-20 18:09:06 · 1838 阅读 · 2 评论 -
目标检测之loss:softmax Loss 梯度推导
1softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 si = si/(si+sj+...sk)更形象的如下图表示:softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值, 而这些值...转载 2018-03-31 21:09:14 · 2551 阅读 · 0 评论 -
深度学习剖根问底:各种Loss大总结
1. 指数损失函数(Adaboost)学过Adaboost算法的人都知道,它是前向分步加法算法的特例,是一个加和模型,损失函数就是指数函数。在Adaboost中,经过m此迭代之后,可以得到fm(x):Adaboost每次迭代时的目的是为了找到最小化下列式子时的参数α和G:而指数损失函数(exp-loss)的标准形式如下可以看出,Adaboost的目标式子就是指数损失,在...原创 2018-09-08 17:55:33 · 8959 阅读 · 1 评论