机器学习:GDBT分类和回归

640?wx_fmt=png

def findLossAndSplit(x,y):

    # 我们用 x 来表示训练数据
    # 我们用 y 来表示训练数据的label
    # x[i]表示训练数据的第i个特征
    # x_i 表示第i个训练样本

    # minLoss 表示最小的损失
    minLoss = Integet.max_value

    # feature 表示是训练的数据第几纬度的特征
    feature = 0

    # split 表示切分点的个数
    split = 0



    # M 表示 样本x的特征个数
    for j in range(0,M):

        # 该维特征下,特征值的每个切分点,这里具体的切分方式可以自己定义
        for c in range(0,x[j]):

            L = 0
            # 第一类

            R1 = {x|x[j] <= c}
            # 第二类

            R2 = {x|x[j] > c}
            # 属于第一类样本的y值的平均值

            y1 = ave{y|x 属于 R1}
            # 属于第二类样本的y值的平均值

            y2 = ave{y| x 属于 R2}
            # 遍历所有的样本,找到 loss funtion 的值

            for x_1 in all x
                if x_1 属于 R1: 
                    L += (y_1 - y1)^2 
                else:
                    L += (y_1 - y2)^2

            if L < minLoss:
               minLoss = L
               feature  = i
               split = c

    return minLoss,feature ,split

640?wx_fmt=png

# 定义训练数据

train_data = [[5.1,3.5,1.4,0.2],[4.9,3.0,1.4,0.2],[7.0,3.2,4.7,1.4],[6.4,3.2,4.5,1.5],[6.3,3.3,6.0,2.5],[5.8,2.7,5.1,1.9]]

# 定义label
label_data = [[1,0,0],[1,0,0],[0,1,0],[0,1,0],[0,0,1],[0,0,1]]
# index 表示的第几类

def findBestLossAndSplit(train_data,label_data,index):
        sample_numbers = len(label_data)
        feature_numbers = len(train_data[0])
        current_label = []

        # define the minLoss
        minLoss = 10000000

        # feature represents the dimensions of the feature
        feature = 0

        # split represents the detail split value
        split = 0

        # get current label
        for label_index in range(0,len(label_data)):
            current_label.append(label_data[label_index][index])

        # trans all features
        for feature_index in range(0,feature_numbers):
            ## current feature value
            current_value = []

            for sample_index in range(0,sample_numbers):
                current_value.append(train_data[sample_index][feature_index])

            L = 0
            ## different split value
            print current_value
            for index in range(0,len(current_value)):
                R1 = []
                R2 = []
                y1 = 0
                y2 = 0

                for index_1 in range(0,len(current_value)):
                    if current_value[index_1] < current_value[index]:
                        R1.append(index_1)
                    else:
                        R2.append(index_1)

                ## calculate the samples for first class
                sum_y = 0
                for index_R1 in R1:
                    sum_y += current_label[index_R1]

                if len(R1) != 0:
                    y1 = float(sum_y) / float(len(R1))
                else:
                    y1 = 0


                ## calculate the samples for second class
                sum_y = 0
                for index_R2 in R2:
                    sum_y += current_label[index_R2]
                if len(R2) != 0:
                    y2 = float(sum_y) / float(len(R2))
                else:
                    y2 = 0

                ## trans all samples to find minium loss and best split
                for index_2 in range(0,len(current_value)):
                    if index_2 in R1:
                        L += float((current_label[index_2]-y1))*float((current_label[index_2]-y1))
                    else:
                        L += float((current_label[index_2]-y2))*float((current_label[index_2]-y2))


                if L < minLoss:
                    feature = feature_index
                    split = current_value[index]
                    minLoss = L
                    print "minLoss"
                    print minLoss
                    print "split"
                    print split
                    print "feature"
                    print feature

        return minLoss,split,feature

findBestLossAndSplit(train_data,label_data,0)

3 总结

目前,我们总结了 gbdt 的算法的流程,gbdt如何选择特征,如何产生特征的组合,以及gbdt 如何用于分类,这个目前可以认为是gbdt 最经常问到的四个部分。至于剩余的问题,因为篇幅的问题,我们准备再开一个篇幅来进行总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值