wfl6666
码龄4年
关注
提问 私信
  • 博客:16,011
    视频:43
    16,054
    总访问量
  • 14
    原创
  • 2,287,691
    排名
  • 15
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 毕业院校: 西安电子科技大学
  • 加入CSDN时间: 2020-05-26
博客简介:

wfl6666的博客

查看详细资料
个人成就
  • 获得30次点赞
  • 内容获得13次评论
  • 获得91次收藏
创作历程
  • 4篇
    2023年
  • 11篇
    2022年
成就勋章
兴趣领域 设置
  • 人工智能
    机器学习深度学习图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

阅读笔记-Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for few-shot learning

提高小数据集下数据的利用效率,几乎没有将其应用于针对更加敏感于过拟合的小样本任务上的相关研究。一种基于 DINO [2] 知识蒸馏架构的分层级联 Transformer (HCTransformer) 网络,通过谱聚类 tokens 池化以利用图像的内在结构来减少前景内容和背景噪声的模糊性,同时也提供了对不同数据集对于 patch token 切分大小的不同需求的适用性选择;并利用一种非传统的监督方式,通过标签的潜在属性在图像标签中找到更丰富的视觉信息,而非简单地学习由标签分类的视觉概念。SOTA!
原创
发布博客 2023.03.25 ·
375 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

论文阅读CVPR2022Language as Queries for Referring Video Object Segmentation 语言作为查询的参考视频目标分割框架

本文提出了一个简单统一的参考视频目标分割框架,不同于以往复杂、多阶段的pipeline,本文提出了将语言描述作为查询的概念,使得模型能够精准地关注于目标对象,同时通过实例序列匹配自然地完成目标的跟踪,实现了端到端的输出
原创
发布博客 2023.03.18 ·
520 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Localization Distillation for Dense Object Detection -用于密集目标检测的定位蒸馏(LD)

在本文中,通过重新表述本地化的知识蒸馏过程,我们提出了一种新的本地化蒸馏(LD)方法,该方法可以有效地将本地化知识从教师转移到学生。此外,我们还启发式地引入了有价值的定位区域的概念,该概念可以帮助选择性地提取特定区域的语义和定位知识。
原创
发布博客 2023.03.02 ·
604 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

Progressive End-to-End Object Detection in Crowded Scenes-拥挤场景下的渐进式端到端目标检测

多个候选框都预测到了一个目标上和加深网络的时候,性能不会有什么提升。因此本文主要的改动在于decoder的最后一个stage。在最后一个state中,提出了一个relation information extractor和query updater。除此之外,还提出了一个一对一标签分配规则(没有在图显出)。relation information extractor是用于noise-query和accepted query进行空间交互的,而query updater用于更新query
原创
发布博客 2023.02.25 ·
1457 阅读 ·
9 点赞 ·
3 评论 ·
17 收藏

Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking 阅读笔记-OCSORT可视化分析

可视化及OCR、OCM、OOS的分析:
原创
发布博客 2022.12.10 ·
443 阅读 ·
2 点赞 ·
2 评论 ·
6 收藏

基于二型模糊逻辑控制理论的无人机目标跟踪系统研究_黎瑶.caj

发布资源 2022.11.30 ·

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals - 稀疏-RCNN:具有可学习提议的端到端对象检测--阅读笔记

Sparse R-CNN,端到端物体检测,proposal boxes , proposal features ,稀疏R-CNN完全避免了所有与对象候选对象设计和多对一标签分配相关的工作。更重要的是,最终的预测结果直接输出,没有非最大抑制后处理。稀疏R-CNN在具有挑战性的COCO数据集上展示了与建立良好的检测器基线相当的准确性、运行时和训练收敛性能,
原创
发布博客 2022.11.24 ·
556 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

用于加速高分辨率小目标检测的级联稀疏查询QueryDet

发布视频 2022.11.19

USAD-UnSupervised Anomaly Detection on Multivariate Time Series一种基于自编码器的多元时间序列无监督异常检测

提出了一种基于反向训练自编码器的快速稳定的多变量时间序列无监督异常检测方法。它的自动编码器架构使它能够以无监督的方式学习。对抗训练及其体系结构的使用使得它能够在提供快速训练的同时隔离异常。
原创
发布博客 2022.10.29 ·
1654 阅读 ·
4 点赞 ·
5 评论 ·
10 收藏

基于背景建模的交通监控无监督异常检测--2018AI CITY Track 2 亚军 ---决策模块详解

其实也就是利用背景建模去检测正在静止的车辆,通过检测静止车辆在背景中的持续时间有没有超过异常静止时间的阈值,来判断是否异常,因此我们如果使用目前的违停检测(原理同样是检测禁停区域内静止时间),我认为是殊途同归。因为我们使用目标检测和跟踪以及基于违停,实验发现虽然有时目标会失踪,在目标很小的情况下,但是项目代码里应该是做了特征匹配什么的,一般id不跳变,除非有遮挡,当然都不是绝对的,这个论文的目标检测与特征匹配也比较老,因此我们可以不需要考虑这个复杂的匹配过程。写完之后发现可借鉴的异常判定只有时间窗口。
原创
发布博客 2022.10.22 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Dense trajectories and motion boundary descriptors for action recognition 密集轨迹:DT算法

动作识别 密集轨迹 运动边界直方图 HOG HOF MBH
原创
发布博客 2022.10.15 ·
874 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

On Space-Time Interest Points --时空关键点

基于时空关键/兴趣点的核心思想是:视频图像中的关键点通常是在时空维度上发生强烈变化的数据,这些数据反映了目标运动的重要信息。
原创
发布博客 2022.10.14 ·
888 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Generative Cooperative Learning for Unsupervised Video Anomaly Detection

无监督视频异常检测方法相当稀疏,为了消除获取费力注释的成本,并允许在没有人工干预的情况下部署这样的系统。为此,论文提出了一种新的无监督 生成式合作学习(GCL) 方法用于视频异常检测,该方法利用异常的低频率来构建生成器和鉴别器之间的交叉监督。
原创
发布博客 2022.10.07 ·
1288 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

ROC曲线面积AUC详解 --转载

ROC曲线下面积AUC,FPR和TPR
转载
发布博客 2022.10.06 ·
716 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Deep Spatio-Temporal Representation for Detection of Road Accidents Using Stacked Autoencoder

一种新的道路交通事故自动检测框架。该框架从原始像素强度的STVVs中自动学习特征表示(外观特征、运动特征),而不是传统的手工制作特征。采用异常检测思路。该框架使用对普通交通视频进行去噪的自动编码器(SADE)提取深度表示。根据重构误差和深度表示的可能性来确定事故发生的可能性。对于深度表示的可能性,使用one-class的SVM训练非监督模型。此外,利用车辆轨迹的交点来降低虚警率,增加整个系统的可靠性。
原创
发布博客 2022.09.30 ·
1008 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Unsupervised Anomaly Detection for Traffic Surveillance Based on Background Modeling -- 阅读笔记

在交通监控方面论文给出了一个基于无监督背景建模的方法进行车辆异常静止的检测方法。
原创
发布博客 2022.09.29 ·
707 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

小样本目标检测综述 --刘浩宇,王向军 --阅读笔记

目标检测;小样本学习;数据增强;增量学习;元学习
原创
发布博客 2022.09.23 ·
4709 阅读 ·
8 点赞 ·
1 评论 ·
43 收藏
加载更多