概述
Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
Spark
Spark是一种由Scala语言开发的快速、通用、可扩展的大数据分析引擎
Spark Core中提供了Spark最基础与最核心的功能
Spark SQL是Spark用来操作结构化数据的组件。通过Spark SQL,用户可以使用SQL或者Apache Hive版本的SQL方言(HQL)来查询数据。
Spark Streaming是Spark平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。
Spark主要功能主要是用于数据计算,所以其实Spark一直被认为是Hadoop MR框架的升级版
核心模块
- Spark Core
Spark Core中提供了Spark最基础与最核心的功能,Spark其他的功能如:Spark SQL,Spark Streaming,GraphX, MLlib都是在Spark Core的基础上进行扩展的 - Spark SQL
Spark SQL是Spark用来操作结构化数据的组件。通过Spark SQL,用户可以使用SQL或者Apache Hive版本的SQL方言(HQL)来查询数据。 - Spark Streaming
Spark Streaming是Spark平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。 - Spark MLlib
MLlib是Spark提供的一个机器学习算法库。MLlib不仅提供了模型评估、数据导入等额外的功能,还提供了一些更底层的机器学习原语。 - Spark GraphX
GraphX是Spark面向图计算提供的框架与算法库。
IDEA中使用Spark
增加Scala插件
Spark由Scala语言开发的,所以Spark开发中所使用的语言就是Scala,当前的Spark版本为2.4.5,默认采用的Scala版本为2.12。开发前请保证IDEA开发工具中含有Scala开发插件。
增加依赖关系
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>2.4.5</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 该插件用于将Scala代码编译成class文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<!-- 声明绑定到maven的compile阶段 -->
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
WordCount案例
// 创建Spark运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建Spark上下文环境对象(连接对象)
val sc : SparkContext = new SparkContext(sparkConf)
// 读取文件数据
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
// 将文件中的数据进行分词
val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭Spark连接
sc.stop()
log4j.propertier
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
异常处理
如果本机操作系统是Windows,在程序中使用了Hadoop相关的东西,比如写入文件到HDFS,则会遇到如下异常:
出现这个问题的原因,并不是程序的错误,而是windows系统用到了hadoop相关的服务,解决办法是通过配置关联到windows的系统依赖就可以了
在IDEA中配置Run Configuration,添加HADOOP_HOME变量
Spark运行环境
Local模式
所谓的Local模式,就是不需要其他任何节点资源就可以在本地执行Spark代码的环境,一般用于教学,调试,演示等。
解压缩文件
- 将spark-2.4.5-bin-without-hadoop-scala-2.12.tgz文件上传到Linux并解压缩,放置在指定位置,路径中不要包含中文或空格。
链接:https://pan.baidu.com/s/1mlc2PGzZU5qOW7pPogw1mw 提取码:xuazcd /opt/software tar -zxvf spark-2.4.5-bin-without-hadoop-scala-2.12.tgz -C /opt/module cd /opt/module mv spark-2.4.5-bin-without-hadoop-scala-2.12 spark-local
- spark2.4.5默认不支持Hadoop3,可以采用多种不同的方式关联Hadoop3
方式一 : 修改spark-local/conf/spark-env.sh文件,增加如下内容
此操作, 在使用spark前需要先启动hadoop
方式二 : 除了修改配置文件外,也可以直接引入对应的Jar包SPARK_DIST_CLASSPATH=$(/opt/module/hadoop3/bin/hadoop classpath)
链接:https://pan.baidu.com/s/1wuwzxB6-sP81mPAfmjU17A 提取码:b36j
将所有jar包拷贝到 → /opt/module/spark-local/jars目录
启动Local环境
cd /opt/module/spark-local
bin/spark-shell --master local[*]
启动后, 可以通过Web UI监控页面访问
http://虚拟机地址:4040
命令行工具
在解压缩文件夹下的data目录中,添加word.txt文件。在命令行工具中执行如下代码指令(和IDEA中代码简化版一致)
sc.textFile("data/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
退出本地模式
Ctrl + c 或 Scala 指令 [ :quit ]
提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-2.4.5.jar \
10
- –class表示要执行程序的主类
- –master local[2] 部署模式,默认为本地模式,数字表示分配的虚拟CPU核数量
- spark-examples_2.12-2.4.5.jar 运行的应用类所在的jar包
- 数字10表示程序的入口参数,用于设定当前应用的任务数量
Standalone模式
local本地模式毕竟只是用来进行练习演示的,真实工作中还是要将应用提交到对应的集群中去执行。独立部署(Standalone)模式是一种只使用Spark自身节点运行的集群模式。Spark的Standalone模式体现了经典的master-slave模式。
集群规划 :
解压缩文件
- 将spark-2.4.5-bin-without-hadoop-scala-2.12.tgz文件上传到Linux并解压缩在指定位置
链接:https://pan.baidu.com/s/1mlc2PGzZU5qOW7pPogw1mw 提取码:xuazcd /opt/software tar -zxvf spark-2.4.5-bin-without-hadoop-scala-2.12.tgz -C /opt/module cd /opt/module mv spark-2.4.5-bin-without-hadoop-scala-2.12 spark-standalone
- spark2.4.5默认不支持Hadoop3,可以采用多种不同的方式关联Hadoop3
方式一 : 修改spark-standalone/conf/spark-env.sh文件,增加如下内容
此操作, 在使用spark前需要先启动hadoop
方式二 : 除了修改配置文件外,也可以直接引入对应的Jar包SPARK_DIST_CLASSPATH=$(/opt/module/hadoop3/bin/hadoop classpath)
链接:https://pan.baidu.com/s/1wuwzxB6-sP81mPAfmjU17A 提取码:b36j
将所有jar包拷贝到 → /opt/module/spark-standalone/jars目录
修改配置文件 - 进入解压缩后路径的conf目录,修改slaves.template文件名为slaves
mv slaves.template slaves
- 修改slaves文件,添加work节点
linux1
linux2
linux3
- 修改spark-env.sh.template文件名为spark-env.sh
mv spark-env.sh.template spark-env.sh
- 修改spark-env.sh文件,添加JAVA_HOME环境变量和集群对应的master节点
export JAVA_HOME=/opt/module/jdk1.8.0_144
SPARK_MASTER_HOST=linux1
SPARK_MASTER_PORT=7077
- 分发spark-standalone目录
xsync spark-standalone
启动集群
8. 启动集群
cd /opt/module/spark-standalone
sbin/start-all.sh
- 查看三台服务器运行进程
myjps
- 查看Master资源监控Web UI界面
http://服务器地址:8080
提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077 \
./examples/jars/spark-examples_2.12-2.4.5.jar \
10
- –class表示要执行程序的主类
- –master spark://linux1:7077 独立部署模式,连接到Spark集群
- spark-examples_2.12-2.4.5.jar 运行类所在的jar包
- 数字10表示程序的入口参数,用于设定当前应用的任务数量
执行任务时, 会产生多个Java进程
执行任务时, 默认采用服务器集群节点的总核数, 每个节点内存1024M。
提交参数说明
在提交应用中,一般会同时一些提交参数
配置历史服务
由于spark-shell停止掉后,集群监控linux1:4040页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。
- 修改spark-defaults.conf.template文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
- 修改spark-default.conf文件,配置日志存储路径
注意:需要启动hadoop集群,HDFS上的directory目录需要提前存在。
hadoop fs -mkdir /directory
sbin/start-dfs.sh
spark.eventLog.enabled true
spark.eventLog.dir hdfs://linux1:9820/directory
- 修改spark-env.sh文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:9820/directory
-Dspark.history.retainedApplications=30"
- 参数1含义:WEBUI访问的端口号为18080
- 参数2含义:指定历史服务器日志存储路径
- 参数3含义:指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
- 分发配置文件
xsync conf
- 重新启动集群和历史服务
sbin/start-all.sh
sbin/start-history-server.sh
- 重新执行任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077 \
./examples/jars/spark-examples_2.12-2.4.5.jar \
10
16. 查看历史服务:http://linux1:18080
配置高可用(HA)
所谓的高可用是因为当前集群中的Master节点只有一个,所以会存在单点故障问题。所以为了解决单点故障问题,需要在集群中配置多个Master节点,一旦处于活动状态的Master发生故障时,由备用Master提供服务,保证作业可以继续执行。这里的高可用一般采用Zookeeper设置。
集群规划 :
17. 停止集群
sbin/stop-all.sh
- 启动Zookeeper
xstart zk
- 修改spark-env.sh文件添加如下配置
注释如下内容:
#SPARK_MASTER_HOST=linux1
#SPARK_MASTER_PORT=7077
SPARK_MASTER_WEBUI_PORT=8989
添加如下内容:
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=linux1,linux2,linux3
-Dspark.deploy.zookeeper.dir=/spark"
- 分发配置文件
xsync conf/
- 启动集群
sbin/start-all.sh
22. 启动linux2的单独Master节点,此时linux2节点Master状态处于备用状态
[root@linux2 spark-standalone]# sbin/start-master.sh
- 提交应用到高可用集群
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://LIFE:7077,LIVE:7077 \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-2.4.5.jar \
10
- 停止linux1的Master资源监控进程
- 查看linux2的Master 资源监控Web UI,稍等一段时间后,linux2节点的Master状态提升为活动状态
Yarn模式
独立部署(Standalone)模式由Spark自身提供计算资源,无需其他框架提供资源。这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。但是Spark主要是计算框架,而不是资源调度框架,所以本身提供的资源调度并不是它的强项,所以还是和其他专业的资源调度框架(Yarn)集成会更靠谱一些。
解压缩文件
- 将spark-2.4.5-bin-without-hadoop-scala-2.12.tgz文件上传到Linux并解压缩,放置在指定位置,路径中不要包含中文或空格。
链接:https://pan.baidu.com/s/1mlc2PGzZU5qOW7pPogw1mw 提取码:xuazcd /opt/software tar -zxvf spark-2.4.5-bin-without-hadoop-scala-2.12.tgz -C /opt/module cd /opt/module mv spark-2.4.5-bin-without-hadoop-scala-2.12 spark-yarn
- spark2.4.5默认不支持Hadoop3,可以采用多种不同的方式关联Hadoop3
方式一 : 修改spark-local/conf/spark-env.sh文件,增加如下内容
此操作, 在使用spark前需要先启动hadoop
方式二 : 除了修改配置文件外,也可以直接引入对应的Jar包SPARK_DIST_CLASSPATH=$(/opt/module/hadoop3/bin/hadoop classpath)
链接:https://pan.baidu.com/s/1wuwzxB6-sP81mPAfmjU17A 提取码:b36j
将所有jar包拷贝到 → /opt/module/spark-yarn/jars目录
修改配置文件 - 修改hadoop配置文件/opt/module/hadoop/etc/hadoop/yarn-site.xml, 并分发
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
分发配置文件
- 修改conf/spark-env.sh,添加JAVA_HOME和YARN_CONF_DIR配置
mv spark-env.sh.template spark-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop
启动HDFS及Yarn集群
提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-2.4.5.jar \
10
查看http://linux2:8088页面,点击History,查看历史页面
配置历史服务器
- 修改spark-defaults.conf.template文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
- 修改spark-default.conf文件,配置日志存储路径
注意:需要启动hadoop集群,HDFS上的目录需要提前存在。
[root@linux1 hadoop]# sbin/start-dfs.sh
[root@linux1 hadoop]# hadoop fs -mkdir /directory
spark.eventLog.enabled true
spark.eventLog.dir hdfs://linux1:8020/directory
- 修改spark-env.sh文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"
- 参数1含义:WEB UI访问的端口号为18080
- 参数2含义:指定历史服务器日志存储路径
- 参数3含义:指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
- 修改spark-defaults.conf
spark.yarn.historyServer.address=linux1:18080
spark.history.ui.port=18080
- 启动历史服务
sbin/start-history-server.sh
- 重新提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-2.4.5.jar \
10
- Web页面查看日志:http://linux2:8088
K8S & Mesos模式
Mesos是Apache下的开源分布式资源管理框架,它被称为是分布式系统的内核,在Twitter得到广泛使用,管理着Twitter超过30,0000台服务器上的应用部署,但是在国内,依然使用着传统的Hadoop大数据框架,所以国内使用Mesos框架的并不多,但是原理其实都差不多。
容器化部署是目前业界很流行的一项技术,基于Docker镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s),而Spark也在最近的版本中支持了k8s部署模式。此处不提供详解。想继续了解的小伙伴点击传送门 :https://spark.apache.org/docs/latest/running-on-kubernetes.html
Windows模式
在学习时,每次都需要启动虚拟机,启动集群,这是一个比较繁琐的过程,并且会占大量的系统资源,导致系统执行变慢,不仅仅影响学习效果,也影响学习进度,Spark提供了可以在windows系统下启动本地集群的方式,这样,在不使用虚拟机的情况下,也能学习Spark的基本使用。
解压缩文件
将文件spark-2.4.5-bin-without-hadoop-scala-2.12.tgz解压缩到无中文无空格的路径中,将hadoop3依赖jar包拷贝到jars目录中。
启动本地环境
- 执行解压缩文件路径下bin目录中的spark-shell.cmd文件,启动Spark本地环境
- 在bin目录中创建input目录,并添加word.txt文件, 在命令行中输入脚本代码
sc.textFile("input/word.txt").flatMap(_.split(",")).map((_,1)).reduceByKey(_+_).collect
命令行提交应用
spark-submit --class org.apache.spark.examples.SparkPi --master local[2] ../examples/jars/spark-examples_2.12-2.4.5.jar 10
小结
部署模式对比
端口号
- Spark查看当前Spark-shell运行任务情况端口号:4040(计算)
- Spark Master内部通信服务端口号:7077
- Standalone模式下,Spark Master Web端口号:8080(资源)
- Spark历史服务器端口号:18080
- Hadoop YARN任务运行情况查看端口号:8088