CSAPP实验一datalab

本文深入探讨了位运算的基础及高级应用,通过一系列具体实例展示了如何仅使用位运算符实现复杂的逻辑判断和数学运算,包括但不限于按位取反、异或、移位等操作。

      其实这个实验比较难的是bitcount操作,我参考了这个链接http://stackoverflow.com/questions/3815165/how-to-implement-bitcount-using-only-bitwise-operators

 * CS:APP Data Lab 
 * 
 * bits.c - Source file with your solutions to the Lab.
 *          This is the file you will hand in to your instructor.
 *
 * WARNING: Do not include the <stdio.h> header; it confuses the dlc
 * compiler. You can still use printf for debugging without including
 * <stdio.h>, although you might get a compiler warning. In general,
 * it's not good practice to ignore compiler warnings, but in this
 * case it's OK.  
 */

#include "btest.h"
#include <limits.h>

/*
 * Instructions to Students:
 *
 * STEP 1: Fill in the following struct with your identifying info.
 */
team_struct team =
{
   /* Team name: Replace with either:
      Your login ID if working as a one person team
      or, ID1+ID2 where ID1 is the login ID of the first team member
      and ID2 is the login ID of the second team member */
    "1",
   /* Student name 1: Replace with the full name of first team member */
   "",
   /* Login ID 1: Replace with the login ID of first team member */
   "",

   /* The following should only be changed if there are two team members */
   /* Student name 2: Full name of the second team member */
   "",
   /* Login ID 2: Login ID of the second team member */
   ""
};

#if 0
/*
 * STEP 2: Read the following instructions carefully.
 */

You will provide your solution to the Data Lab by
editing the collection of functions in this source file.

CODING RULES:
 
  Replace the "return" statement in each function with one
  or more lines of C code that implements the function. Your code 
  must conform to the following style:
 
  int Funct(arg1, arg2, ...) {
      /* brief description of how your implementation works */
      int var1 = Expr1;
      ...
      int varM = ExprM;

      varJ = ExprJ;
      ...
      varN = ExprN;
      return ExprR;
  }

  Each "Expr" is an expression using ONLY the following:
  1. Integer constants 0 through 255 (0xFF), inclusive. You are
      not allowed to use big constants such as 0xffffffff.
  2. Function arguments and local variables (no global variables).
  3. Unary integer operations ! ~
  4. Binary integer operations & ^ | + << >>
    
  Some of the problems restrict the set of allowed operators even further.
  Each "Expr" may consist of multiple operators. You are not restricted to
  one operator per line.

  You are expressly forbidden to:
  1. Use any control constructs such as if, do, while, for, switch, etc.
  2. Define or use any macros.
  3. Define any additional functions in this file.
  4. Call any functions.
  5. Use any other operations, such as &&, ||, -, or ?:
  6. Use any form of casting.
 
  You may assume that your machine:
  1. Uses 2s complement, 32-bit representations of integers.
  2. Performs right shifts arithmetically.
  3. Has unpredictable behavior when shifting an integer by more
     than the word size.

EXAMPLES OF ACCEPTABLE CODING STYLE:
  /*
   * pow2plus1 - returns 2^x + 1, where 0 <= x <= 31
   */
  int pow2plus1(int x) {
     /* exploit ability of shifts to compute powers of 2 */
     return (1 << x) + 1;
  }

  /*
   * pow2plus4 - returns 2^x + 4, where 0 <= x <= 31
   */
  int pow2plus4(int x) {
     /* exploit ability of shifts to compute powers of 2 */
     int result = (1 << x);
     result += 4;
     return result;
  }


NOTES:
  1. Use the dlc (data lab checker) compiler (described in the handout) to 
     check the legality of your solutions.
  2. Each function has a maximum number of operators (! ~ & ^ | + << >>)
     that you are allowed to use for your implementation of the function. 
     The max operator count is checked by dlc. Note that '=' is not 
     counted; you may use as many of these as you want without penalty.
  3. Use the btest test harness to check your functions for correctness.
  4. The maximum number of ops for each function is given in the
     header comment for each function. If there are any inconsistencies 
     between the maximum ops in the writeup and in this file, consider
     this file the authoritative source.
#endif

/*
 * STEP 3: Modify the following functions according the coding rules.
 * 
 *   IMPORTANT. TO AVOID GRADING SURPRISES:
 *   1. Use the dlc compiler to check that your solutions conform
 *      to the coding rules.
 *   2. Use the btest test harness to check that your solutions produce 
 *      the correct answers. Watch out for corner cases around Tmin and Tmax.
 */
/* 
 * bitNor - ~(x|y) using only ~ and & 
 *   Example: bitNor(0x6, 0x5) = 0xFFFFFFF8
 *   Legal ops: ~ &
 *   Max ops: 8
 *   Rating: 1
 */
int bitNor(int x, int y) {
    // ~(x|y) = ~x & ~y
  return (~x)&(~y);
}

/* 
 * bitXor - x^y using only ~ and & 
 *   Example: bitXor(4, 5) = 1
 *   Legal ops: ~ &
 *   Max ops: 14
 *   Rating: 2
 */
int bitXor(int x, int y) {
    //主要使用狄摩根定律
  return (~(~x & ~y)) & (~(x & y));

}
/* 
 * isNotEqual - return 0 if x == y, and 1 otherwise 
 *   Examples: isNotEqual(5,5) = 0, isNotEqual(4,5) = 1
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 6
 *   Rating: 2
 */
int isNotEqual(int x, int y) {
    
    return !!(x ^ y);
}
/* 
 * getByte - Extract byte n from word x
 *   Bytes numbered from 0 (LSB) to 3 (MSB)
 *   Examples: getByte(0x12345678,1) = 0x56
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 6
 *   Rating: 2
 */
int getByte(int x, int n) {
    //get the mask 0x000000FF
  int mask = ~((1<<31)>>23);
  return  (x>>(n<<3)) &mask;
}
/* 
 * copyLSB - set all bits of result to least significant bit of x
 *   Example: copyLSB(5) = 0xFFFFFFFF, copyLSB(6) = 0x00000000
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 5
 *   Rating: 2
 */
int copyLSB(int x) {
   return x<<31>>31;
}
/* 
 * logicalShift - shift x to the right by n, using a logical shift
 *   Can assume that 1 <= n <= 31
 *   Examples: logicalShift(0x87654321,4) = 0x08765432
 *   Legal ops: ~ & ^ | + << >>
 *   Max ops: 16
 *   Rating: 3 
 */
int logicalShift(int x, int n) {
 //int mask = ~((1<<31)>>(n+(~1)+1));
 //get the high n bit 0 mask
 int mask = ~((1<<31)>>n<<1);
  return (x>>n) & mask;
}
/*
 * bitCount - returns count of number of 1's in word
 *   Examples: bitCount(5) = 2, bitCount(7) = 3
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 40
 *   Rating: 4
 */
int bitCount(int x) {
    int result;
    //to get mask1 0x55555555
    int tmp_mask1=(0x55)|(0x55<<8);
    int mask1=(tmp_mask1)|(tmp_mask1<<16);
    //to get mask2 0x33333333
    int tmp_mask2=(0x33)|(0x33<<8);
    int mask2=(tmp_mask2)|(tmp_mask2<<16);
    //to get mask3 0x0f0f0f0f
    int tmp_mask3=(0x0f)|(0x0f<<8);
    int mask3=(tmp_mask3)|(tmp_mask3<<16);
    //to get mask4 0x00ff00ff
    int mask4=(0xff)|(0xff<<16);
    //to get mask5 0x0000ffff
    int mask5=(0xff)|(0xff<<8);
    //add every two bits  
    result=(x&mask1)+((x>>1)&mask1);  
    //add every four bits  
    result=(result&mask2)+((result>>2)&mask2);  
    //add every eight bits  
    result=(result+(result>>4))&mask3;  
    //add every sixteen bits  
    result=(result+(result>>8))&mask4;  
    //add every thirty two bits  
    result=(result+(result>>16))&mask5;  
    return result;  
}
/* 
 * bang - Compute !x without using !
 *   Examples: bang(3) = 0, bang(0) = 1
 *   Legal ops: ~ & ^ | + << >>
 *   Max ops: 12
 *   Rating: 4 
 */
int bang(int x) {
    //x or -x when x =0 is 0 while others is 0XFFFFFFF
  return ~(x |(~x+1))>>31&0x01;
}
/* 
 * leastBitPos - return a mask that marks the position of the
 *               least significant 1 bit. If x == 0, return 0
 *   Example: leastBitPos(96) = 0x20
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 6
 *   Rating: 4 
 */
int leastBitPos(int x) {
    //x的2complement :the leastbit is invariable.
  return (~x +1) & x;
}
/* 
 * TMax - return maximum two's complement integer 
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 4
 *   Rating: 1
 */
int tmax(void) {
  return ~(1<<31);
}
/* 
 * isNonNegative - return 1 if x >= 0, return 0 otherwise 
 *   Example: isNonNegative(-1) = 0.  isNonNegative(0) = 1.
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 6
 *   Rating: 3
 */
int isNonNegative(int x) {
  //get the ~x>>31 to get the result
    return  (~x>>31) & 0x01;
}
/* 
 * isGreater - if x > y  then return 1, else return 0 
 *   Example: isGreater(4,5) = 0, isGreater(5,4) = 1
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 24
 *   Rating: 3
 */
int isGreater(int x, int y) {
    int signx = x>>31 & 0x01;
    int signy = y>>31 & 0x01;
    int sxmy  = (x+(~y)+1)>>31 & 0x01;

    return (((signx ^ 0x01) & (signy ^ 0x01) & (sxmy ) )|
        (signx & signy & (sxmy  )) | ((signx ) &(signy ^ 0x01))
        | !(x ^y))^ 0x01 ;
}
/* 
 * divpwr2 - Compute x/(2^n), for 0 <= n <= 30
 *  Round toward zero
 *   Examples: divpwr2(15,1) = 7, divpwr2(-33,4) = -2
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 15
 *   Rating: 2
 */
int divpwr2(int x, int n) {
    int signx = x>>31;
    //mask = 1<<n -1 
    int mask = (1<<n) + (~0);
     int bias = signx & mask;
    return (x+bias)>>n;
}
/* 
 * abs - absolute value of x (except returns TMin for TMin)
 *   Example: abs(-1) = 1.
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 10
 *   Rating: 4
 */
int abs(int x) {
    //judge the sign ,x>0 =x,x<0: ~x+1
    int signx = x>>31;
    int a = signx ^ x;

  return a + (~signx + 1);
}
/* 
 * addOK - Determine if can compute x+y without overflow
 *   Example: addOK(0x80000000,0x80000000) = 0,
 *            addOK(0x80000000,0x70000000) = 1, 
 *   Legal ops: ! ~ & ^ | + << >>
 *   Max ops: 20
 *   Rating: 3
 */
int addOK(int x, int y) {
    // ~(x&y& ~r)  &  ~(~x&~y& r)
//    int signx = x>>31 & 0x01;
  //  int signy = y>>31 & 0x01;
  //  int signxy = (x+y)>>31 & 0x01;

 //   return ((signx & signy &(signxy ^ 0x1)) ^ 0x01) & (0x01 ^ ((signx ^ 0x1) & (signy ^ 0x01) & signxy)) ;
 //
 //    to  see the sign of x and y is not both equal to ans
    int ans = x+ y;
    return !(( (x ^ans) & (y ^ ans ))>>31);
}

### 关于 CSAPP Datalab 实验中的 `floatPower2` 题目 在 CSAPP 的 Data Lab 中,题目通常涉及位操作以及浮点数表示的理解。对于第13题 `floatPower2`,其目标是返回 \( 2^n \) 的值给定整型输入 \( n \),并且不允许使用任何库函数或者浮点运算符。 #### 浮点数的 IEEE 754 表示 IEEE 754 是种标准化的浮点数表示方法,在单精度 (32-bit) 下分为三个部分: - 符号位 (Sign bit): 占 1 位,0 表示正数,1 表示负数。 - 指数位 (Exponent bits): 占 8 位,偏移量为 127。 - 尾数位 (Mantissa/Fraction bits): 占 23 位,默认隐含前导 1。 因此,\( 2^n \) 可以通过直接修改指数字段来实现[^3]。 #### 解决方案思路 为了计算 \( 2^n \),可以利用以下特性: - 如果 \( n >= 0 \),则可以通过设置合适的指数位得到结果。 - 如果 \( n < 0 \),则需要考虑溢出情况并返回特定值(如零或其他定义好的错误码)。 以下是可能的解决方案: ```c #include "bits.h" float floatPower2(int n) { unsigned result; if (n >= 0 && n <= 127) { // 设置指数位 E = n + 偏移量 127 result = (unsigned)(n + 127) << 23; } else if (n < 0) { // 对于负幂次,处理方式取决于具体需求 result = 0; // 返回 0 或其他合理值 } else { // 处理超出范围的情况 result = 0xFF << 23; // 正无穷大 } return *(float*)&result; } ``` 上述代码片段中,当 \( n \geq 0 \) 并且不超过最大允许值时,我们手动调整指数位;如果 \( n < 0 \),可以选择返回零或者其他合理的默认值[^4]。 #### 注意事项 需要注意的是,该解法假设输入参数 \( n \) 不会超过标准范围内可表达的最大值或最小值。此外,还需要特别关注边界条件下的行为,比如非常大的正值可能导致上溢而极小的负值可能会下溢至零[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值