# CSAPP data Lab

### bitAnd

/*
* bitAnd - x&y using only ~ and |
*   Example: bitAnd(6, 5) = 4
*   Legal ops: ~ |
*   Max ops: 8
*   Rating: 1
*/
int bitAnd(int x, int y) {
return ~(~x|~y);
}

• 德摩根定律

### getByte

/*
* getByte - Extract byte n from word x
*   Bytes numbered from 0 (LSB) to 3 (MSB)
*   Examples: getByte(0x12345678,1) = 0x56
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 6
*   Rating: 2
*/
int getByte(int x, int n) {
int bias = n<<3;
return (x>>bias)&0xFF;
}

#### 思路

• 移位到最低的1byte然后用0xFF提取

### logicalShift

/*
* logicalShift - shift x to the right by n, using a logical shift
i
*   Can assume that 0 <= n <= 31
*   Examples: logicalShift(0x87654321,4) = 0x08765432
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 20
*   Rating: 3
*/
int logicalShift(int x, int n) {
return (1<<32+~n<<1)+~0 & (x>>n);
//equal to ((1<<31-n<<1)-1)&(x>>n);
//负号优先级高于移位
}

#### 思路

• 因为不能用-，所以用取反加一代替取负

• 构造低32-nbit的1来提取移位后的数值

• 因为移位量不能小于0或大于等于32，所以对于n可能是0而导致移位量是32的情况，先移位31位，再移位1位

小技巧，如果n移位k，k$\in$[0, 32]，则可以n>>(k-!!k)>>!!k

### bitCount

/*
* bitCount - returns count of number of 1's in word
*   Examples: bitCount(5) = 2, bitCount(7) = 3
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 40
*   Rating: 4
*/
int bitCount(int x) {
int mark1 = 0x55;
int mark2 = 0x33;
int mark3 = 0x0F;
mark1 |= mark1<<8;
mark1 |= mark1<<16;
mark2 |= mark2<<8;
mark2 |= mark2<<16;
mark3 |= mark3<<8;
mark3 |= mark3<<16;

x = (x>>1&mark1)+(x&mark1); //every two bits; clear record;
x = (x>>2&mark2)+(x&mark2); //every four bits; clear record;
x = (x>>4&mark3)+(x&mark3); //every eight bits; clear record;
x = (x>>8)+x;   //every 16 bits; record in the low 8 bits;
x = (x>>16)+x;  //every 32 bits; record in the low 8 bits;
return x&0xFF;
}

#### 思路

• 构造0x55555555，提取每两位中的low bit。通过移位及0x55555555，提取每两位中的高位。然后相加，使得结果中，每两位的二进制值就是该两位的bit数目
• 同样的思路，提取每四位的low bit、high bit，然后相加
• 因为32==100000(二级制)，也就是只需要5位就可以记录有多少bit数，所以不需要每次都构造常数屏蔽高位的值，直接移位相加然后取低8bit就可以得到最终结果

### bang

/*
* bang - Compute !x without using !
*   Examples: bang(3) = 0, bang(0) = 1
*   Legal ops: ~ & ^ | + << >>
*   Max ops: 12
*   Rating: 4
*/
int bang(int x) {
x |= x>>1;
x |= x>>2;
x |= x>>4;
x |= x>>8;
x |= x>>16;
return ~x&0x1;
}

#### 思路

• 如果非0，位模式从最高位的1到最低位都填充为1，
• 如果为0，则位模式还是保持全0

### tmin

/*
* tmin - return minimum two's complement integer
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 4
*   Rating: 1
*/
int tmin(void) {
return 1<<31;
}

### fitBits

/*
* fitsBits - return 1 if x can be represented as an
*  n-bit, two's complement integer.
*   1 <= n <= 32
*   Examples: fitsBits(5,3) = 0, fitsBits(-4,3) = 1
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 15
*   Rating: 2
*/
int fitsBits(int x, int n) {
return !(x>>n+~0)|!((x>>n+~0)+1);
//equal to !(x>>n-1) | !((x>>n-1)+1)
}

#### 思路

• 算术移n-1位，如果是负数，且可以用n bits的补码表示，则得到-1。如果是正数，则得到0。

### divpwr2

/*
* divpwr2 - Compute x/(2^n), for 0 <= n <= 30
*  Round toward zero
*   Examples: divpwr2(15,1) = 7, divpwr2(-33,4) = -2
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 15
*   Rating: 2
*/
int divpwr2(int x, int n) {
int t = x>>31;
return (x+(t&1<<n)+(~(t&1)+1))>>n;
//equal to (x+(t&1<<n)-(t&1))>>n;
//note that & 的优先级低于<<
}

#### 思路

• 直接移位是round down，无论是负数还是正数
• 所以要实现round to zero , C表达式为x<0 ? x+(pow(2,n)-1)>>n : x>>n

### negate

/*
* negate - return -x
*   Example: negate(1) = -1.
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 5
*   Rating: 2
*/
int negate(int x) {
return ~x+1;
}

• 直接取反再加1

### isPositive

/*
* isPositive - return 1 if x > 0, return 0 otherwise
*   Example: isPositive(-1) = 0.
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 8
*   Rating: 3
*/
int isPositive(int x) {
return ~(x>>31)&!!x;
}

• 符号位判断，并且非0

### isLessOrEqual

/*
* isLessOrEqual - if x <= y  then return 1, else return 0
*   Example: isLessOrEqual(4,5) = 1.
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 24
*   Rating: 3
*/
int isLessOrEqual(int x, int y) {
return !!(x>>31&~(y>>31)) | !(~(x>>31)&(y>>31))&(x+~y+1>>31) | !(x^y);
//equal to  !!(x>>31&~(y>>31)) | !(~(x>>31)&(y>>31))&(x-y>>31) | !(x^y)
}

#### 思路

• x<0&&y>0 | !(x>0&&y<0)&&(x-y>0) | x==y

### ilog2

/*
* ilog2 - return floor(log base 2 of x), where x > 0
*   Example: ilog2(16) = 4
*   Legal ops: ! ~ & ^ | + << >>
*   Max ops: 90
*   Rating: 4
*/
int ilog2(int x) {
int mark1 = 0x55;
int mark2 = 0x33;
int mark3 = 0x0F;
mark1 |= mark1<<8;
mark1 |= mark1<<16;
mark2 |= mark2<<8;
mark2 |= mark2<<16;
mark3 |= mark3<<8;
mark3 |= mark3<<16;

x |= x>>1;
x |= x>>2;
x |= x>>4;
x |= x>>8;
x |= x>>16;
x >>= 1;

x = (x>>1&mark1)+(x&mark1); //every two bits; clear record;
x = (x>>2&mark2)+(x&mark2); //every four bits; clear record;
x = (x>>4&mark3)+(x&mark3); //every eight bits; clear record;
x = (x>>8)+x;   //every 16 bits; record in the low 8 bits;
x = (x>>16)+x;  //every 32 bits; record in the low 8 bits;
return x&0xFF;
}

#### 思路

• 先构造从最高的1到最低位均为1的二进制，然后类似bitCount

### float_neg

/*
* float_neg - Return bit-level equivalent of expression -f for
*   floating point argument f.
*   Both the argument and result are passed as unsigned int's, but
*   they are to be interpreted as the bit-level representations of
*   single-precision floating point values.
*   When argument is NaN, return argument.
*   Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
*   Max ops: 10
*   Rating: 2
*/
unsigned float_neg(unsigned uf) {
unsigned t = uf&0x7FFFFFFF;
if(t^0x7F800000 && (t>>23)+1>>8)
return uf;
else
return uf^0x80000000;
}

#### 思路

• 判别是否是NaN。先判断尾数是否全0，然后用(t>>23)+1>>8判断exp是否全1

### float_i2f

/*
* float_i2f - Return bit-level equivalent of expression (float) x
*   Result is returned as unsigned int, but
*   it is to be interpreted as the bit-level representation of a
*   single-precision floating point values.
*   Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
*   Max ops: 30
*   Rating: 4
*/
unsigned float_i2f(int x) {
unsigned shiftLeft=0;
unsigned afterShift, tmp, flag;
unsigned absX=x;
unsigned sign=0;
//special case
if (x==0) return 0;
//if x < 0, sign = 1000...,abs_x = -x
if (x<0)
{
sign=0x80000000;
absX=-x;
}
afterShift=absX;
//count shift_left and after_shift
while (1)
{
tmp=afterShift;
afterShift<<=1;
shiftLeft++;
if (tmp & 0x80000000) break;
}
if ((afterShift & 0x01ff)>0x0100)
flag=1;
else if ((afterShift & 0x03ff)==0x0300)
flag=1;
else
flag=0;

return sign + (afterShift>>9) + ((159-shiftLeft)<<23) + flag;
}
//from http://www.cnblogs.com/tenlee/p/4951639.html

#### 思路

• 分情况处理0、负数、正数

• 要处理舍人

• 向接近的舍入
• 如果处于中间，向偶数舍入
• 舍入时，如果尾数加一，exp有可能需要进位，这时候直接加一效果一样，可以导致exp进位，不需要特殊处理。如果exp等于0xFE，那么进位就变成了inf，也是合法的

### float_twict

/*
* float_twice - Return bit-level equivalent of expression 2*f for
*   floating point argument f.
*   Both the argument and result are passed as unsigned int's, but
*   they are to be interpreted as the bit-level representation of
*   single-precision floating point values.
*   When argument is NaN, return argument
*   Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
*   Max ops: 30
*   Rating: 4
*/
unsigned float_twice(unsigned uf) {
unsigned t = uf&0x7FFFFFFF;
unsigned temp = t&0x7F800000;
unsigned temp2 = uf&0xFF800000;
int expFull = !(temp^0x7F800000);
if(t^0x7F800000 && expFull)
return uf;
if(expFull){
return temp2;
}
if(!(t&0x7F800000)){
unsigned k = (uf&0x7FFFFF);
return temp2+(k<<1);
}
return (temp>>23)+1<<23 | uf&0x807FFFFF;
}

#### 思路

• 分情况处理三种IEEE754的情况
• 需要注意exp全0时，乘以二就是尾数乘以二，如果发生进位需要exp进位，不需要特殊处理（第三个if），因为进位直接导致exp加一，这就足够了