Python3:《机器学习实战》之朴素贝叶斯(2)使用Python进行文本分类
前言:
要从文本中获取特征,需要先拆分文本。这里的特征是来自文本的词条(token),一个词条是字符的任意组合。可以把词条想象为单词,也可以使用非单词词条,如URL、IP地址或者任意其他字符串。然后将一个文本片段表示为一个词向量,其中值为1表示词条出现,0表示词条未出现。
以在线社区的留言板为例,为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的言语,那么就将该留言表示为内容不当。过滤这类内容是一个很常见的需求。对此问题建立两个类别:侮辱类和非侮辱类,使用1和0分别表示。
本文主要利用Python实现文本分类。
准备数据:从文本中构建词向量
我们将把文本看成单词向量或者词条向量,也就是说将句子转换为向量。打开文本编辑器,创建一个叫bayes.py的新文件,用如下代码实现构建词向量。
代码实现:
"""
Created on Sep 08, 2017
Naive Bayes
@author: wordzzzz
"""
from numpy import *
def loadDataSet():
"""
Function: 创建实验样本
Args: 无
Returns: postingList:词条切分后的文档集合
classVec:类别标签的集合
"""
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1]
return postingList,classVec
def createVocabList(dataSet):
"""
Function: 创建一个包含所有文档中出现的不重复词的列表
Args: dataSet:数据集
Returns: list(vocabSet):返回一个包含所有文档中出现的不重复词的列表
"""
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
"""
Function: 词表到向量的转换
Args: vocabList:词汇表
inputSet:某个文档
Returns: returnVec:文档向量
"""
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocablary!" % word)
return returnVec
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
首先命令行生成词汇表,程序中巧妙地运用了Python的set数据类型,通过并集运算,可以生成一个包含所有文档中出现的不重复词的列表。
输出结果:
>>> import bayes
>>> listOPosts, listClasses = bayes.loadDataSet()
>>> myVocabList = bayes.createVocabList(listOPosts)
>>> myVocabList
['mr', 'cute', 'please', 'to', 'steak', 'worthless', 'not', 'how', 'so', 'I', 'stop', 'ate', 'buying', 'help', 'has', 'maybe', 'dog', 'him', 'flea', 'posting', 'stupid', 'is', 'food', 'garbage', 'take', 'park', 'my', 'quit', 'licks', 'dalmation', 'love', 'problems']
检查上述词表,就会发现这里不会出现重复的单词。目前该词表并没有进行排序,需要的话稍后可以对其排序。
然后看一下setOfWords2Vec的运行效果:
>>> bayes.setOfWords2Vec(myVocabList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
>>> bayes.setOfWords2Vec(myVocabList, listOPosts[3])
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
该函数使用词汇表或者想要检查的所有单词作为输入,然后为其中每一个单词构建一个特征。我们来看对listOPosts[0]([‘my’, ‘dog’, ‘has’, ‘flea’, ‘problems’, ‘help’, ‘please’])进行词条转换输出的结果,可以看到第三个元素值为1,即词汇表中对应的please这个单词在listOPosts[0]中,事实也确实如此。
训练算法:从词向量计算概率
前面介绍了如何将一组单词转换为一组数字,现在我们就开始使用这些数字计算概率。我们把上篇文章的贝叶斯准则再掏出来,讲之前的x、y替换为w。w表示这是一个向量,即它由多个数值组成。在这个例子中,数值个数与词汇表中的词个数相同。
P(ci|w)=P(w|ci)P(ci)P(w)
使用上述公式,对每个类计算该值,然后比较这两个概率值的大小。首先通过类别i(侮辱性留言或者非侮辱性留言)中文档数除以总的文档数来计算概率
P(ci)
。接下来计算
P(w|ci)
,这里就用到了贝叶斯假设。如果将w展开为一个个独立特征,那么就可以将上述概率写作
P(w0,w1,w2,⋅⋅⋅wN|ci)
。这里假设所有词都互相独立,就是我们之前提到的naive的条件独立性假设,这意味着我们可以使用
P(w0|ci)P(w1|ci)P(w2|ci)...P(wN|ci)
来计算上述概率,就算起来so easy!
写个伪代码大概就是这么个意思:
计算每个类别中的文档数目
对每篇训练文档:
对每个类别:
如果词条出现在文档中,则增加该词条的计数
增加所有词条的计数值
对每个类别:
对每个词条:
将该词条的数目除以总词条数目得到条件概率
返回每个类别的条件概率
下面的代码使用了NumPy的一些函数,故应确保将from numpy import *语句添加到bayes.py文件的最前面。
代码实现:
def trainNB0(trainMatrix, trainCategory):
"""
Function: 朴素贝叶斯分类器训练函数
Args: trainMatrix:文档矩阵
trainCategory:类别标签向量
Returns: p0Vect:非侮辱性词汇概率向量
p1Vect:侮辱性词汇概率向量
pAbusive:侮辱性文档概率
"""
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = zeros(numWords); p1Num = zeros(numWords)
p0Denom = 0.0; p1Denom = 0.0
for i in range(numTrainDocs):
if trainCategory[i] ==1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = p1Num/p1Denom
p0Vect = p0Num/p0Denom
return p0Vect, p1Vect, pAbusive
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
输出结果:
>>> reload(bayes)
<module 'bayes' from 'E:\\机器学习实战\\mycode\\Ch04\\bayes.py'>
>>> listOPosts, listClasses = bayes.loadDataSet()
>>> myVocabList = bayes.createVocabList(listOPosts)
>>> trainMat = []
>>> for postinDoc in listOPosts:
... trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
...
>>> p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)
>>> pAb
0.5
>>> p0V
array([ 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0.04166667,
0. , 0. , 0.04166667, 0.04166667, 0.04166667,
0.04166667, 0.04166667, 0. , 0.04166667, 0.04166667,
0. , 0.04166667, 0.08333333, 0.04166667, 0. ,
0. , 0.04166667, 0. , 0. , 0. ,
0. , 0.125 , 0. , 0.04166667, 0.04166667,
0.04166667, 0.04166667])
>>> p1V
array([ 0. , 0. , 0. , 0.05263158, 0. ,
0.10526316, 0.05263158, 0. , 0. , 0. ,
0.05263158, 0. , 0.05263158, 0. , 0. ,
0.05263158, 0.10526316, 0.05263158, 0. , 0.05263158,
0.15789474, 0. , 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0. , 0.05263158, 0. , 0. ,
0. , 0. ])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
首先,我们发现文档属于侮辱类的概率pAb为0.5,该值是正确定。词汇表中的第一个词是cute,其在类别0中出现一次,在类别1中从未出现,对应的条件概率分别为0.44166667和0.0。该计算是正确的。
测试算法:根据现实情况修改分类器
利用贝叶斯分类器对文档进行分类时,要计算过个概率的乘积以获得文档属于某个类别的概率,如果其中一个概率值为0,那么最后的乘积也为0。为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2。所以需要修改一下trainNB()中的分母分子初始化代码。
p0Num = ones(numWords); p1Num = ones(numWords)
p0Denom = 2.0; p1Denom = 2.0
另一个遇到的问题就是下溢出,太多的很小数相乘,导致程序向下溢出或者得不到正确的答案(比如四舍五入后乘积为0)。一种解决办法就是对乘积取自然对数。即!$ln(a*b) = ln(a) + ln(b)$
,于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。我们可以放心的是,采用自然对数处理不会有任何损失。下图给出了函数f(x)和ln(f(x))的曲线。
检查这两条曲线,就会发现他们在相同区域内同时增加或者减少,并且在相同点上取到极值。取值虽然不同,但是不影响最终结果。所以需要修改一下trainNB()中的求概率代码。
#对每个元素做除法求概率
p1Vect = log(p1Num/p1Denom)
p0Vect = log(p0Num/p0Denom)
下面构建朴素贝叶斯分类函数和测试函数:
代码实现:
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
"""
Function: 朴素贝叶斯分类函数
Args: vec2Classify:文档矩阵
p0Vec:非侮辱性词汇概率向量
p1Vec:侮辱性词汇概率向量
pClass1:侮辱性文档概率
Returns: 1:侮辱性文档
0:非侮辱性文档
"""
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def testingNB():
"""
Function: 朴素贝叶斯分类器测试函数
Args: 无
Returns: testEntry:测试词汇列表
classifyNB(thisDoc, p0V, p1V, pAb):分类结果
"""
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(trainMat, listClasses)
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
输出结果:
>>> reload(bayes)
<module 'bayes' from 'E:\\机器学习实战\\mycode\\Ch04\\bayes.py'>
>>> bayes.testingNB()
['love', 'my', 'dalmation'] classified as: 0
['stupid', 'garbage'] classified as: 1
大家可以对输入文本做一下修改,看看分类器会输出什么结果。这个例子非常简单,但是它展示了朴素贝叶斯分类器的工作原理。接下来我们可以对代码做一些修改,使分类器工作得更好。
准备数据:文档词袋模型
我们将每个词的出现与否作为一个特征,可以被描述为词集模型(set-of-words model)。如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某些信息,这种方法被称为词袋模型(bag-of-words model)。词袋中的单词可以出现多次,而在词集中,每个单词只能出现一次。下面的程序给出了基于词袋模型的朴素贝叶斯代码,。它与函数setOfWords2Vec()几乎完全相同,唯一不同的是每当遇到一个单词时,它会增加词向量中的对应值,而不只是将对应的数值设为1。
代码实现:
def bagOfWords2VecMN(vocabList, inputSet):
"""
Function: 词袋到向量的转换
Args: vocabList:词袋
inputSet:某个文档
Returns: returnVec:文档向量
"""
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~
完的汪(∪。∪)。。。zzz