Python3:《机器学习实战》之朴素贝叶斯(2)使用Python进行文本分类

Python3:《机器学习实战》之朴素贝叶斯(2)使用Python进行文本分类



前言:

  要从文本中获取特征,需要先拆分文本。这里的特征是来自文本的词条(token),一个词条是字符的任意组合。可以把词条想象为单词,也可以使用非单词词条,如URL、IP地址或者任意其他字符串。然后将一个文本片段表示为一个词向量,其中值为1表示词条出现,0表示词条未出现。

  以在线社区的留言板为例,为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的言语,那么就将该留言表示为内容不当。过滤这类内容是一个很常见的需求。对此问题建立两个类别:侮辱类和非侮辱类,使用1和0分别表示。

  本文主要利用Python实现文本分类。

准备数据:从文本中构建词向量

  我们将把文本看成单词向量或者词条向量,也就是说将句子转换为向量。打开文本编辑器,创建一个叫bayes.py的新文件,用如下代码实现构建词向量。

代码实现:

# -*- coding: UTF-8 -*-
"""
Created on Sep 08, 2017
Naive Bayes
@author: wordzzzz
"""

from numpy import *

def loadDataSet():
    """
    Function:   创建实验样本

    Args:       无

    Returns:    postingList:词条切分后的文档集合
                classVec:类别标签的集合
    """ 
    #词条切分后的文档集合
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    #类别标签的集合
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    #词条切分后的文档集合和类别标签结合
    return postingList,classVec

def createVocabList(dataSet):
    """
    Function:   创建一个包含所有文档中出现的不重复词的列表

    Args:       dataSet:数据集

    Returns:    list(vocabSet):返回一个包含所有文档中出现的不重复词的列表
    """
    #创建一个空集
    vocabSet = set([])
    #将新词集合添加到创建的集合中
    for document in  dataSet:
        #操作符 | 用于求两个集合的并集
        vocabSet = vocabSet | set(document)
    #返回一个包含所有文档中出现的不重复词的列表
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    """
    Function:   词表到向量的转换

    Args:       vocabList:词汇表
                inputSet:某个文档

    Returns:    returnVec:文档向量
    """
    #创建一个所含元素都为0的向量
    returnVec = [0]*len(vocabList)
    #遍历文档中词汇
    for word in inputSet:
        #如果文档中的单词在词汇表中,则相应向量位置置1
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        #否则输出打印信息
        else: print("the word: %s is not in my Vocablary!" % word)
    #向量的每一个元素为1或0,表示词汇表中的单词在文档中是否出现
    return returnVec
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67

  首先命令行生成词汇表,程序中巧妙地运用了Python的set数据类型,通过并集运算,可以生成一个包含所有文档中出现的不重复词的列表。

输出结果:

>>> import bayes
>>> listOPosts, listClasses = bayes.loadDataSet()
>>> myVocabList = bayes.createVocabList(listOPosts)
>>> myVocabList
['mr', 'cute', 'please', 'to', 'steak', 'worthless', 'not', 'how', 'so', 'I', 'stop', 'ate', 'buying', 'help', 'has', 'maybe', 'dog', 'him', 'flea', 'posting', 'stupid', 'is', 'food', 'garbage', 'take', 'park', 'my', 'quit', 'licks', 'dalmation', 'love', 'problems']
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

  检查上述词表,就会发现这里不会出现重复的单词。目前该词表并没有进行排序,需要的话稍后可以对其排序。 
然后看一下setOfWords2Vec的运行效果:

>>> bayes.setOfWords2Vec(myVocabList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
>>> bayes.setOfWords2Vec(myVocabList, listOPosts[3])
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
 
 
  • 1
  • 2
  • 3
  • 4

  该函数使用词汇表或者想要检查的所有单词作为输入,然后为其中每一个单词构建一个特征。我们来看对listOPosts[0]([‘my’, ‘dog’, ‘has’, ‘flea’, ‘problems’, ‘help’, ‘please’])进行词条转换输出的结果,可以看到第三个元素值为1,即词汇表中对应的please这个单词在listOPosts[0]中,事实也确实如此。

训练算法:从词向量计算概率

  前面介绍了如何将一组单词转换为一组数字,现在我们就开始使用这些数字计算概率。我们把上篇文章的贝叶斯准则再掏出来,讲之前的x、y替换为w。w表示这是一个向量,即它由多个数值组成。在这个例子中,数值个数与词汇表中的词个数相同。

P(ci|w)=P(w|ci)P(ci)P(w)

  使用上述公式,对每个类计算该值,然后比较这两个概率值的大小。首先通过类别i(侮辱性留言或者非侮辱性留言)中文档数除以总的文档数来计算概率 P(ci) 。接下来计算 P(w|ci) ,这里就用到了贝叶斯假设。如果将w展开为一个个独立特征,那么就可以将上述概率写作 P(w0,w1,w2,wN|ci) 。这里假设所有词都互相独立,就是我们之前提到的naive的条件独立性假设,这意味着我们可以使用 P(w0|ci)P(w1|ci)P(w2|ci)...P(wN|ci) 来计算上述概率,就算起来so easy!

  写个伪代码大概就是这么个意思:

计算每个类别中的文档数目
对每篇训练文档:
    对每个类别:
        如果词条出现在文档中,则增加该词条的计数
        增加所有词条的计数值
对每个类别:
    对每个词条:
        将该词条的数目除以总词条数目得到条件概率
返回每个类别的条件概率
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

  下面的代码使用了NumPy的一些函数,故应确保将from numpy import *语句添加到bayes.py文件的最前面。

代码实现:

def trainNB0(trainMatrix, trainCategory):
    """
    Function:   朴素贝叶斯分类器训练函数

    Args:       trainMatrix:文档矩阵
                trainCategory:类别标签向量

    Returns:    p0Vect:非侮辱性词汇概率向量
                p1Vect:侮辱性词汇概率向量
                pAbusive:侮辱性文档概率
    """
    #获得训练集中文档个数
    numTrainDocs = len(trainMatrix)
    #获得训练集中单词个数
    numWords = len(trainMatrix[0])
    #计算文档属于侮辱性文档的概率
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    #初始化概率的分子变量
    p0Num = zeros(numWords); p1Num = zeros(numWords)
    #初始化概率的分母变量
    p0Denom = 0.0; p1Denom = 0.0
    #遍历训练集trainMatrix中所有文档
    for i in range(numTrainDocs):
        #如果侮辱性词汇出现,则侮辱词汇计数加一,且文档的总词数加一
        if trainCategory[i] ==1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        #如果非侮辱性词汇出现,则非侮辱词汇计数加一,且文档的总词数加一
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    #对每个元素做除法求概率
    p1Vect = p1Num/p1Denom
    p0Vect = p0Num/p0Denom
    #返回两个类别概率向量和一个概率
    return p0Vect, p1Vect, pAbusive
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

输出结果:

>>> reload(bayes)
<module 'bayes' from 'E:\\机器学习实战\\mycode\\Ch04\\bayes.py'>
>>> listOPosts, listClasses = bayes.loadDataSet()       #从预先加载值中调入数据
>>> myVocabList = bayes.createVocabList(listOPosts)     #构建一个包含所有值得词汇表
>>> trainMat = []                                       #利用for循环来填充trainMat列表
>>> for postinDoc in listOPosts:
...     trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
...
>>> p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)
>>> pAb                                                 #任意侮辱性文档的概率
0.5
>>> p0V
array([ 0.04166667,  0.04166667,  0.04166667,  0.04166667,  0.04166667,
        0.        ,  0.        ,  0.04166667,  0.04166667,  0.04166667,
        0.04166667,  0.04166667,  0.        ,  0.04166667,  0.04166667,
        0.        ,  0.04166667,  0.08333333,  0.04166667,  0.        ,
        0.        ,  0.04166667,  0.        ,  0.        ,  0.        ,
        0.        ,  0.125     ,  0.        ,  0.04166667,  0.04166667,
        0.04166667,  0.04166667])
>>> p1V
array([ 0.        ,  0.        ,  0.        ,  0.05263158,  0.        ,
        0.10526316,  0.05263158,  0.        ,  0.        ,  0.        ,
        0.05263158,  0.        ,  0.05263158,  0.        ,  0.        ,
        0.05263158,  0.10526316,  0.05263158,  0.        ,  0.05263158,
        0.15789474,  0.        ,  0.05263158,  0.05263158,  0.05263158,
        0.05263158,  0.        ,  0.05263158,  0.        ,  0.        ,
        0.        ,  0.        ])
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

  首先,我们发现文档属于侮辱类的概率pAb为0.5,该值是正确定。词汇表中的第一个词是cute,其在类别0中出现一次,在类别1中从未出现,对应的条件概率分别为0.44166667和0.0。该计算是正确的。

测试算法:根据现实情况修改分类器

  利用贝叶斯分类器对文档进行分类时,要计算过个概率的乘积以获得文档属于某个类别的概率,如果其中一个概率值为0,那么最后的乘积也为0。为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2。所以需要修改一下trainNB()中的分母分子初始化代码。

    #初始化概率的分子变量
    p0Num = ones(numWords); p1Num = ones(numWords)
    #初始化概率的分母变量
    p0Denom = 2.0; p1Denom = 2.0
 
 
  • 1
  • 2
  • 3
  • 4

  另一个遇到的问题就是下溢出,太多的很小数相乘,导致程序向下溢出或者得不到正确的答案(比如四舍五入后乘积为0)。一种解决办法就是对乘积取自然对数。即!$ln(a*b) = ln(a) + ln(b)$,于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。我们可以放心的是,采用自然对数处理不会有任何损失。下图给出了函数f(x)和ln(f(x))的曲线。

  检查这两条曲线,就会发现他们在相同区域内同时增加或者减少,并且在相同点上取到极值。取值虽然不同,但是不影响最终结果。所以需要修改一下trainNB()中的求概率代码。

    #对每个元素做除法求概率
    p1Vect = log(p1Num/p1Denom)
    p0Vect = log(p0Num/p0Denom)
 
 
  • 1
  • 2
  • 3

  下面构建朴素贝叶斯分类函数和测试函数:

代码实现:

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    """
    Function:   朴素贝叶斯分类函数

    Args:       vec2Classify:文档矩阵
                p0Vec:非侮辱性词汇概率向量
                p1Vec:侮辱性词汇概率向量
                pClass1:侮辱性文档概率

    Returns:    1:侮辱性文档
                0:非侮辱性文档
    """
    #向量元素相乘后求和再加到类别的对数概率上,等价于概率相乘
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    #分类结果
    if p1 > p0:
        return 1
    else:
        return 0

def testingNB():
    """
    Function:   朴素贝叶斯分类器测试函数

    Args:       无

    Returns:    testEntry:测试词汇列表
                classifyNB(thisDoc, p0V, p1V, pAb):分类结果
    """
    #从预先加载中调入数据
    listOPosts, listClasses = loadDataSet()
    #构建一个包含所有词的列表
    myVocabList = createVocabList(listOPosts)
    #初始化训练数据列表
    trainMat = []
    #填充训练数据列表
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    #训练
    p0V, p1V, pAb = trainNB0(trainMat, listClasses)
    #测试
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry,'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
    #测试
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry,'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

输出结果:

>>> reload(bayes)
<module 'bayes' from 'E:\\机器学习实战\\mycode\\Ch04\\bayes.py'>
>>> bayes.testingNB()
['love', 'my', 'dalmation'] classified as:  0
['stupid', 'garbage'] classified as:  1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

  大家可以对输入文本做一下修改,看看分类器会输出什么结果。这个例子非常简单,但是它展示了朴素贝叶斯分类器的工作原理。接下来我们可以对代码做一些修改,使分类器工作得更好。

准备数据:文档词袋模型

  我们将每个词的出现与否作为一个特征,可以被描述为词集模型(set-of-words model)。如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某些信息,这种方法被称为词袋模型(bag-of-words model)。词袋中的单词可以出现多次,而在词集中,每个单词只能出现一次。下面的程序给出了基于词袋模型的朴素贝叶斯代码,。它与函数setOfWords2Vec()几乎完全相同,唯一不同的是每当遇到一个单词时,它会增加词向量中的对应值,而不只是将对应的数值设为1。

代码实现:

def bagOfWords2VecMN(vocabList, inputSet):
    """
    Function:   词袋到向量的转换

    Args:       vocabList:词袋
                inputSet:某个文档

    Returns:    returnVec:文档向量
    """
    #创建一个所含元素都为0的向量
    returnVec = [0]*len(vocabList)
    #将新词集合添加到创建的集合中
    for word in inputSet:
        #如果文档中的单词在词汇表中,则相应向量位置加1
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    #返回一个包含所有文档中出现的词的列表
    return returnVec
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值