hdu 4057 Rescue the Rabbit AC自动机+DP

http://acm.hdu.edu.cn/showproblem.php?pid=4057


11年大连站的题目,在现场已经算是简单题了。。。


给出N(N<=10)个串,每个串都有个权值Wi,|Wi|<100。如果一个串出现了给定的串,那么权值就加上那个W,但只能加一次。现在问你长度为L(L<=100)的串的最大权值是多少?


构造AC自动机,然后DP就好了,DP[100][1000][1024],dp[i][j][k]表示长度为i的串,匹配到自动机中j号节点的状态,串出现的状态二进制表示为k时是否可达。


这时候很容易根据每个状态来转移,但是空间开不下,可以开滚动数组把第一维拿掉。这样就够了。。。大概10^8的算法,10s已经够了。。。


如果写成Trie图会更快点。。。。我的代码500ms


#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 1001;
const int INF = 0x3ffffff;
struct Node{
	int ch[4],pre;
	int b;
}node[maxn];
int top;
int root;
int val[11];
int nw(){
	memset(node[top].ch,0,sizeof(node[top].ch));
	node[top].pre=0;
	node[top].b=0;
	return top++;
}
int tran(char c){
	if(c=='A')return 0;
	else if(c=='T')return 1;
	else if(c=='G')return 2;
	else return 3;
}
char str[100000];
queue<int>q;
void bfs(){
	q.push(root);
	while(!q.empty()){
		int u=q.front();q.pop();
		for(int i=0;i<4;i++){
			int p=node[u].pre;
			if(node[u].ch[i]){
				int v=node[u].ch[i];
				if(u==root)node[v].pre=root;
				else {
					node[v].pre=node[p].ch[i];
					node[v].b|=node[node[p].ch[i]].b;
				}
				q.push(node[u].ch[i]);
			}else{
				if(u==root)node[u].ch[i]=root;
				else {
					node[u].ch[i]=node[p].ch[i];
					//node[u].b|=node[node[p].ch[i]].b;
				}
			}
		}
	}
}
bool dp[2][1010][1024];
int main(){
	int n,l;
	while(~scanf("%d%d",&n,&l)){
		top=0;
		root=nw();
		for(int i=0;i<n;i++){
			scanf("%s",str);
			int len=strlen(str);
			int p=root;
			if(len>l){
				scanf("%d",&val[i]);
				continue;
			}
			for(int j=0;j<len;j++){
				int c=tran(str[j]);
				if(node[p].ch[c]==0){
					node[p].ch[c]=nw();
				}
				p=node[p].ch[c];
			}
			node[p].b=node[p].b|(1<<i);
			scanf("%d",&val[i]);
		}
		bfs();
		int cur=0;
		for(int i=0;i<top;i++){
			for(int j=0;j<1<<n;j++){
				dp[cur][i][j]=false;
			}
		}
		dp[cur][0][0]=true;
		for(int k=0;k<l;k++){
			int next=(cur+1)%2;
			for(int i=0;i<top;i++){
				for(int j=0;j<1<<n;j++){
					dp[next][i][j]=false;
				}
			}
			for(int i=0;i<top;i++){
				for(int j=0;j<1<<n;j++){
					if(dp[cur][i][j]==false)continue;
					for(int t=0;t<4;t++){
						int to=node[i].ch[t];
						int bb=j|node[to].b;
						dp[next][to][bb]=true;
					}
				}
			}
			cur=next;
		}
		int ans=-1;
		for(int i=0;i<top;i++){
			for(int j=0;j<1<<n;j++){
				if(dp[cur][i][j]){
					int sum=0;
					for(int k=0;k<n;k++){
						if(j&(1<<k))sum+=val[k];
					}
					ans=max(sum,ans);
				}
			}
		}
		if(ans<0)printf("No Rabbit after 2012!\n");
		else printf("%d\n",ans);
	}
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值