模板来自notonlysuccess.
模式串只有10个,并且重复出现的分值不累加,因此很容易想到状态压缩。
将模式串加入AC自动机,最多有10*100个状态。
dp[i][j][k]:串长为i,在Trie图上的状态为j,已经包含的模式串为k(二进制表示,第x位为1代表已经包含第x个串)。
dp[i][j][k]为true或false代表该状态是否可达。
沿着Trie图中的边走进行DP,时间复杂度O( 100*1000*1024 );
最后枚举一下串长为L的所有可达状态,最大值即为结果。
PS.内存有限,需要用滚动数组
PS2.若使用静态队列的话,队列大小最好开状态数的二倍或者更多
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cstring> using namespace std; const int MAX_NODE = 1010; const int CHILD_NUM = 4; const int MAXN = 12; const int INF = 1 << 30; struct ACAutomaton { int chd[MAX_NODE][CHILD_NUM]; //每个节点的儿子,即当前节点的状态转移 int val[MAX_NODE]; //记录题目给的关键数据 int fail[MAX_NODE]; //传说中的fail指针 int Q[MAX_NODE<<1]; //队列,用于广度优先计算fail指针 int ID[128]; //字母对应的ID int sz; //已使用节点个数 //初始化,计算字母对应的儿子ID,如:'a'->0 ... 'z'->25 void Initialize() { fail[0] = 0; ID['A'] = 0; ID['G'] = 1; ID['C'] = 2; ID['T'] = 3; return; } //重新建树需先Reset void Reset() { memset(chd[0] , 0 , sizeof(chd[0])); val[0] = 0; sz = 1; } //将权值为key的字符串a插入到trie中 void Insert(char *a,int key) { int p = 0; for ( ; *a ; a ++) { int c = ID[*a]; if (!chd[p][c]) { memset(chd[sz] , 0 , sizeof(chd[sz])); val[sz] = 0; chd[p][c] = sz ++; } p = chd[p][c]; } val[p] = key; } //建立AC自动机,确定每个节点的权值以及状态转移 void Construct() { int *s = Q , *e = Q; for (int i = 0 ; i < CHILD_NUM ; i ++) { if (chd[0][i]) { fail[ chd[0][i] ] = 0; *e ++ = chd[0][i]; } } while (s != e) { int u = *s++; for (int i = 0 ; i < CHILD_NUM ; i ++) { int &v = chd[u][i]; if (v) { *e ++ = v; fail[v] = chd[ fail[u] ][i]; //以下一行代码要根据题目所给val的含义来写 val[v] |= val[ fail[v] ]; } else { v = chd[ fail[u] ][i]; } } } } } AC; int N, L; int cost[MAXN]; bool dp[2][MAX_NODE][ (1 << 10) + 4 ]; int getVal( int S ) { int res = 0; for ( int j = 0; j < N; ++j ) if ( S & ( 1 << j ) ) res += cost[j]; return res; } int main() { char gene[210]; AC.Initialize(); while ( scanf( "%d%d", &N, &L ) == 2 ) { AC.Reset(); for ( int i = 0; i < N; ++i ) { scanf( "%s%d", gene, &cost[i] ); AC.Insert( gene, 1 << i ); } AC.Construct(); int all = 1 << N; memset( dp[0], false, sizeof(dp[0]) ); int pre = 0, cur = 1; dp[0][0][0] = true; for ( int i = 1; i <= L; ++i ) { memset( dp[cur], 0, sizeof(dp[cur]) ); for ( int j = 0; j < AC.sz; ++j ) { for ( int k = 0; k < 4; ++k ) { int next = AC.chd[j][k]; for ( int S = 0; S < all; ++S ) { if ( dp[pre][j][S] ) dp[cur][next][ S|AC.val[next] ] = true; } } } pre ^= 1; cur ^= 1; } int ans = -1; for ( int i = 0; i < all; ++i ) { for ( int j = 0; j < AC.sz; ++j ) { if ( dp[pre][j][i] ) { ans = max( ans, getVal(i) ); break; } } } if ( ans < 0 ) puts("No Rabbit after 2012!"); else printf( "%d\n", ans ); } return 0; }