正十二面体二面角的一种求法

正多面体有正四面体、正六面体、正八面体、正十二面体和正二十面体五种。其中正六面体二面角很平凡的为直角,正四面体、正八面体和正二十面体的面都是正三角形,有很多解三角形的方法可用于求二面角,而正十二面体的面为正五边形,且不易分解为规律明显的三角形,因此正十二面体二面角的求法就相对比较困难。本文给出一种较为简单的求解正十二面体二面角的方法。

如下图所示,设z轴位于A点处且垂直于纸面向外,正五边形ABCDE为正十二面体(棱长为1)的底面,正五边形AEFGH为正十二面体上以AE为轴展开的一个面,正五边形AIJKB为正十二面体上以AB为轴展开的一个面,线段AM所在直线为角IAH的角平分线,线段AM与z轴确定的平面设为\alpha(图中未标出),向量\overrightarrow{AN}\alpha的一个法向量,线IL垂直于y轴,垂足为L。

注意到正五边形内角为108^{\circ},则下文中对图中的角直接代入角度值计算,由读者自行推导或转换。现在将正五边形AIJKB以AB为轴向z轴正方向旋转(此时点L跟随面一起动),当旋转角度为\theta时,由二面角定义,AL与y负半轴夹角也为\theta,由于AL长度为

l^{A I} \cdot \cos \angle L A I=\cos 18^{\circ}

则向量\overrightarrow{AL}的坐标表示为\left(0,-\cos 18^{\circ} \cos \theta, \cos 18^{\circ} \sin \theta\right),又\overrightarrow{L I}=\left(-\sin 18^{\circ}, 0,0\right)

\overrightarrow{A I}=\overrightarrow{A L}+\overrightarrow{L I}=\left(-\sin 18^{\circ},-\cos 18^{\circ} \cos \theta, \cos 18^{\circ} \sin \theta\right)

\angle L A M=36^{\circ}\overrightarrow{A N}=\left(\cos 36^{\circ},-\sin 36^{\circ}, 0\right)。当AIJKB旋转成正十二面体的一个面时,由于对称性,\overrightarrow{A I}应当正好落在面\alpha上,则此时\overrightarrow{A I}\overrightarrow{A N}内积为0,即

-\cos 36^{\circ} \sin 18^{\circ}+\sin 36^{\circ} \cos 18^{\circ} \cos \theta=0

解得:

\theta=\arccos \left(\frac{\cos 36^{\circ} \sin 18^{\circ}}{\sin 36^{\circ} \cos 18^{\circ}}\right)=\arccos \left(\frac{\tan 18^{\circ}}{\tan 36^{\circ}}\right)

而正十二面体二面角在体内,应为180^{\circ}-\theta,即得二面角约为116.565^{\circ}

在MATLAB中,计算两个平面之间的二面角通常涉及到向量运算和几何理解。二面角是空间几何中的一个概念,它描述了两个平面之间的夹角,这个角度在0到π之间。以下是基本步骤: 1. **确定平面的方向**:假设你有两个平面,每个平面都有三个非共线点定义其法向量(normal vectors)。例如,A平面的法向量是`n1 = [a1, b1, c1]`,B平面的法向量是`n2 = [a2, b2, c2)`。 2. **计算向量**:取A平面上的一个点P和B平面上的一个点Q,它们构成的向量`v1 = Q - P`将是从A到B的向量。 3. **投影向量**:将`v1`投影到`n1`上得到向量`proj_v1`,然后再次投影到`n2`上得到向量`proj_v1_onto_n2`。这可以使用`proj = n1 * (v1 .* n2) / norm(n1)^2`来计算。 4. **计算角度**:二面角可以用这两个方向余弦(cosines)的反切(arccos或acos)计算,即`angle = acos(dot(proj_v1_onto_n2, n2) / norm(proj_v1_onto_n2))`。注意结果范围需要调整到0到π,因为余弦值可能大于1。 ```matlab function angle_degrees = two_sided_angle(P1, Q1, ANormal, BNormal) % 计算向量 v1 = Q1 - P1; % 投影向量 proj_v1 = ANormal * (v1 .* BNormal) / norm(ANormal)^2; proj_v1_onto_n2 = proj_v1 ./ norm(proj_v1); % 计算并转换为度 angle_radians = acos(dot(proj_v1_onto_n2, BNormal)); angle_degrees = rad_to_deg(angle_radians); end % 辅助函数:弧度转角度 function deg = rad_to_deg(rad) deg = rad * 180 / pi; end % 示例使用 angle_degrees = two_sided_angle([0 0 0], [1 0 0], [1 0 0], [0 1 0]); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值