正多面体有且只有5种,为什么?
正多面体的特点:
所有面都是全等的正多边形
所有顶点处的二面角相等
每个顶点处相交的面的数量相等
整个多面体是封闭的(即它构成一个三维空间的有限封闭形状)。
解释一、从顶点处的角度和限制看
在三维空间中,若多个正多边形围绕一个顶点拼接,其内角之和必须满足:
内角和<360°.
原因:若内角和等于或超过 360°,这些面将无法在三维空间中“闭合”,只能平铺成平面(如蜂窝结构),无法形成凸多面体。设:
- 每个面是全等的正多边形(边数为 m,正m多边形)
- 每个顶点的结构完全相同(每个顶点连接 n 条边,亦即每个顶点处有n个面相交)。
由此切入思考
结论:五种正多面体
通过顶点处的角度和限制,仅存在五组可行的 (m,n)组合,对应五种正多面体:
正多面体 面的形状 (m) 顶点连接边数 (n) 顶点内角和
正四面体 正三角形 (3) 3 180°
正八面体 正三角形 (3) 4 240°
正二十面体 正三角形 (3) 5 300°
正六面体(立方体) 正方形 (4) 3 270°
正十二面体 正五边形 (5) 3 324°
解释二、从欧拉公式看
凸多面体有:
V – E + F = 2
其中 V、E、F 分别是顶点数(Vertex)、棱数(Edge)和面数(Face)。
分析边数E与顶点数V、面数F的关系,确定每个面有m条边(正m边形),每个顶点连接n条边(亦即每个顶点处有n个面相交):
结论
仅存在五组解,对应五种正多面体:
- 正四面体(m=3,n=3)。
- 正八面体(m=3,n=4)。
- 正二十面体(m=3,n=5)。
- 正六面体,即立方体(m=4,n=3)。
- 正十二面体(m=5,n=3)。
附录
附录1、凸正多面体及其欧拉公式验证:
1. 正四面体
- 顶点数 V=4,
- 棱数 E=6,
- 面数 F=4。
代入欧拉公式:
V−E+F=4−6+4=2
2. 立方体
- 顶点数 V=8,
- 棱数 E=12,
- 面数 F=6。
代入欧拉公式:
V−E+F=8−12+6=2.
3. 正八面体
- 顶点数 V=6,
- 棱数 E=12,
- 面数 F=8。
代入欧拉公式:
V−E+F=6−12+8=2.
4. 正十二面体
- 顶点数 V=20,
- 棱数 E=30,
- 面数 F=12。
代入欧拉公式:
V−E+F=20−30+12=2.
5. 正二十面体
- 顶点数 V=12,
- 棱数 E=30,
- 面数 F=20。
代入欧拉公式:
V−E+F=12−30+20=2
附录2、世界上只存在五种正多面体?https://zhuanlan.zhihu.com/p/265526766