正多面体有且只有5种,为什么?

正多面体有且只有5种,为什么?

正多面体的特点:

    所有面都是全等的正多边形

    所有顶点处的二面角相等

    每个顶点处相交的面的数量相等

    整个多面体是封闭的(即它构成一个三维空间的有限封闭形状)。

解释一、从顶点处的角度和限制看

在三维空间中,若多个正多边形围绕一个顶点拼接,其内角之和必须满足:

内角和<360°.

原因:若内角和等于或超过 360°,这些面将无法在三维空间中“闭合”,只能平铺成平面(如蜂窝结构),无法形成凸多面体。设:

  • 每个面是全等的正多边形(边数为 m,正m多边形)
  • 每个顶点的结构完全相同(每个顶点连接 n 条边,亦即每个顶点处有n个面相交)。

由此切入思考

结论:五种正多面体

通过顶点处的角度和限制,仅存在五组可行的 (m,n)组合,对应五种正多面体:

正多面体                  面的形状 (m)     顶点连接边数 (n)     顶点内角和

正四面体                    正三角形 (3)        3                            180°

正八面体                    正三角形 (3)        4                            240°

正二十面体                正三角形 (3)        5                            300°

正六面体(立方体)  正方形 (4)           3                            270°

正十二面体                正五边形 (5)        3                            324°

解释二、从欧拉公式看

凸多面体有:

V – E + F = 2

其中 V、E、F 分别是顶点数(Vertex)、棱数(Edge)和面数(Face)。

分析边数E与顶点数V、面数F的关系,确定每个面有m条边(正m边形),每个顶点连接n条边(亦即每个顶点处有n个面相交)

结论
仅存在五组解,对应五种正多面体:

  1. 正四面体(m=3,n=3)。
  2. 正八面体(m=3,n=4)。
  3. 正二十面体(m=3,n=5)。
  4. 正六面体,即立方体(m=4,n=3)。
  5. 正十二面体(m=5,n=3)。

附录

附录1凸正多面体及其欧拉公式验证:

1. 正四面体

  • 顶点数 V=4,
  • 棱数 E=6,
  • 面数 F=4。

代入欧拉公式:

V−E+F=4−6+4=2

2. 立方体

  • 顶点数 V=8,
  • 棱数 E=12,
  • 面数 F=6。

代入欧拉公式:

V−E+F=8−12+6=2.

3. 正八面体

  • 顶点数 V=6,
  • 棱数 E=12,
  • 面数 F=8。

代入欧拉公式:

V−E+F=6−12+8=2.

4. 正十二面体

  • 顶点数 V=20,
  • 棱数 E=30,
  • 面数 F=12。

代入欧拉公式:

V−E+F=20−30+12=2.

5. 正二十面体

  • 顶点数 V=12,
  • 棱数 E=30,
  • 面数 F=20。

代入欧拉公式:

V−E+F=12−30+20=2

附录2、世界上只存在五种正多面体?https://zhuanlan.zhihu.com/p/265526766

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习&实践爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值