tensorflow
文章平均质量分 71
whackw
测试相关,尽量做到比开发与运维还要牛
展开
-
PyTorch examples入门实例之路
在学习PyTorch 之前,肯定会有人问为不学习tensorflow呢?我的回答如下1、我也是学习了tensorflow,但在继续学习时发现github与知乎中,各种模型网络与新出来模型网络大都是PyTorch版本,也就是大神们研究复现算法时都用PyTorch2、tensorflow是静态的网络结构是提前规化好不能改变,PyTorch是动态灵活可以在运行时自己控制任何细节实现首先推荐大家先进入这个手敲一遍PyTorch examples/PyTorch入门实例但在之前需要安装环境,因为自己安原创 2020-06-01 00:56:01 · 766 阅读 · 0 评论 -
tensorflow初学习者路上各种问题之杀怪(自己遇到解决过,持续更新)
1、解决出现 ImportError: No module named 'tensorflow_datasets'的问题2、distorted_inputs() got an unexpected keyword argument 'data_dir'3、AttributeError: module 'tensorflow' has no attribute 'scalar_summary...原创 2020-01-22 00:55:57 · 329 阅读 · 0 评论 -
同一个主机上安装不同版本TensorFlow1.x与TensorFlow2.x之杀怪
windows系统安装Linux系统安装原创 2020-01-16 12:38:36 · 1823 阅读 · 0 评论 -
tensorflow学习之路-初学习者版本选择
tensorflow各个版本的区别tensorflow - 仅支持 CPU 的当前稳定版本(建议新手使用)tensorflow-gpu - 支持 GPU 的当前稳定版本(Ubuntu 和 Windows)tf-nightly - 仅支持 CPU 的每夜版(不稳定)tf-nightly-gpu - 支持 GPU 的每夜版(不稳定,Ubuntu 和 Windows)tensorflow1.x...原创 2020-01-16 12:33:57 · 4862 阅读 · 0 评论 -
tensorflow学习之路-正则化
为什么要正则化简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集表现很好,测试集表现较差),这会导致模型的泛化能力下降,这时候,我们就需要使用正则化,降低模型的复杂度。1、机器学习中的正则化(Regularization...原创 2020-01-14 23:18:21 · 223 阅读 · 0 评论 -
tensorflow学习之路-卷积神经网络笔记
1、卷积神经网络——输入层、卷积层、激活函数、池化层、全连接层2、卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?3、卷积神经网络的通道数与卷积核数的关系4、卷积神经网络之卷积计算、作用与思想5、模型优化的熵与不平衡学习6、批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解...原创 2020-01-14 12:53:05 · 304 阅读 · 0 评论 -
tensorflow学习之路-全连接层的理解
卷积取的是局部特征,全连接就是把以前的局部特征重新通过权值矩阵组装成完整的图。因为用到了所有的局部特征,所以叫全连接。全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。先看全连接的图:全连接把卷积输...原创 2020-01-14 12:42:15 · 1906 阅读 · 1 评论 -
下载与安装
你可以使用我们提供的 Pip, Docker, Virtualenv, Anaconda 或 源码编译的方法安装 TensorFlow.Pip 安装列表首先安装 pip (或 Python3 的 pip3 ):# Ubuntu/Linux 64-bit$ sudo apt-get install python-pip python-dev# Mac OS X$转载 2017-10-11 17:40:05 · 497 阅读 · 0 评论 -
卷积神经网络工作原理直观的解释
https://www.zhihu.com/question/39022858转载 2017-10-23 18:45:26 · 505 阅读 · 0 评论