tensorflow学习之路-正则化

为什么要正则化
简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集表现很好,测试集表现较差),这会导致模型的泛化能力下降,这时候,我们就需要使用正则化,降低模型的复杂度。

1、机器学习中的正则化(Regularization)
2、机器学习–正则化(Regularization)
3、机器学习正则化方法dropout、Inverted dropout和drop connect的原理及区别

发布了60 篇原创文章 · 获赞 65 · 访问量 100万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 程序猿惹谁了 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览