空间相关性分析

说明:使用MATLAB构建空间权重矩阵,并用stata进行空间相关性分析–计算全局莫兰指数、绘制莫兰散点图


空间自相关分析的结果依赖于空间权重矩阵的选择,因此本文首先涉及空间权重矩阵的构建

空间权重矩阵

类别

权重矩阵符号公式解释
空间邻接矩阵 W 1 \mathrm{W}_1 W1 W i j = { 0 1 W_{i j}=\left\{\begin{array}{l}0 \\1\end{array}\right. Wij={010表示不相邻,1表示相邻
地理距离矩阵 W 2 \mathrm{W}_2 W2 W i j = 1 g D i s t a n c e W_{i j}=\frac{1}{\mathrm{gDistance}} Wij=gDistance1gDistance表示 i \mathrm{i} i城市所在地和 j \mathrm{j} j城市所在地的公路距离
经济距离矩阵 W 3 \mathrm{W}_3 W3 W i j = 1 Y i − Y j W_{i j}=\frac{1}{Y_{i}-Y_{j}} Wij=YiYj1 Y i \mathrm{Y}_i Yi Y j \mathrm{Y}_j Yj表示 i i i j j j地区人均生产总值(GDP)
嵌套矩阵 W 4 \mathrm{W}_4 W4 W 4 \mathrm{W}_4 W4= W 1 \mathrm{W}_1 W1 * W 3 \mathrm{W}_3 W3主对角线元素全为0

MatLab实现

地理距离

Matlab计算空间权重矩阵(地理距离和经济地理距离)_wbj3106的博客-CSDN博客_地理距离矩阵

% 主要应用了matlab的distance函数

clc,clear;

%x为纬度,按列粘贴
x = [36.65; 36.07; 35.05; 37.52; 36.78; 35.38; 36.62; 34.86; 37.5; 37.36; 37.45; 36.45; 35.24; 37.46; 35.42; 36.18];
%y为经度,按列粘贴
y = [117; 120.33; 118.35; 121.39; 118.05; 116.59; 119.1; 117.57; 122.1; 118.03; 116.29; 115.97; 115.43; 118.49; 119.46; 117.13];

A = [x y]  
for i=1:16
    for j=1:16
        B(i,j)=distance(A(i,1),A(i,2),A(j,1),A(j,2));
    end
end

% B算出来的单位是度。换算成距离的话,需要再乘以Pi/180再乘以6378.2,单位为千米。(此处将地球当做一个球体,半径为6378.2千米)
C = B*pi/180*6371;  % C即为地点间地理距离矩阵,单位为千米


% D=1./(C) % D的元素为距离的倒数。即距离数值越小,倒数后构成的权重越大;反之亦然。
D(D==inf)=0;  % 当矩阵元素为无限大时,将其变为0

% 行标准化
E=sum(D,2);  % 计算各行之和
F=repmat(E,1,16);  % 将E复制16行构成16*16的矩阵
W=D./F;  % W即为行标准化后的地理距离空间权重矩阵

xlswrite('W1.xlsx', W, 'Sheet1');
经济距离

Matlab计算空间权重矩阵(地理距离和经济地理距离)_wbj3106的博客-CSDN博客_地理距离矩阵


空间自相关分析

全局空间自相关

理论基础

原假设 H o H_o Ho:所分析的属性在研究区域内的要素之间是随机分布的,即不具有空间相关性
备择假设 H 1 H_1 H1:具有空间相关性

空间自相关 (Global Moran’s I) 的工作原理—ArcGIS Pro | 文档

代码实现

相关视频讲解:空间计量:莫兰指数(Moran’s I)的Stata计算及应用

clear

// spatwmat 定义空间权重矩阵,W.dta为权重矩阵,name(W) 将空间权重矩阵命名为 W
spatwmat using W.dta, name(W)  // 用于全局moran指数分析

// 查看空间权重矩阵
matrix list W 

// 导入数据矩阵
use data.dta, clear

// 全局空间自相关检验
// weights(W) 指定空间权重矩阵为 W
// twotail表示双侧检验,默认为单侧检验(认为只可能存在正空间自相关)
spatgsa a2019,weights(W) moran twotail 

局部空间自相关

相关视频讲解:空间计量:莫兰指数(Moran’s I)的Stata计算及应用

代码实现

clear

// spatwmat 定义空间权重矩阵,name(W) 将空间权重矩阵命名为 W
spatwmat using W2019Eco.dta, name(W) standardize  // 用于局部moran指数分析

// 查看空间权重矩阵
matrix list W 

// 导入数据矩阵
use data0821.dta, clear

// spatlas 局部空间自相关检验
spatlsa a2019, weight(W) moran graph(moran) symbol(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值