题目:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为 O(n)。
因此输出为该子数组的和 18。
编程之美上面的原题,也是动态规划的一道经典题目,O(n)的时间复杂度就是说要在遍历一遍的过程就获取最大值...
这道题目可以这样理解:
初始数组为1,最大值为1;
数组新增加进-2,数组为1、-2,以-2为最终元素的子数组的最大值为-1,因为1+-2 = -1>-2;
数组新增加进3,数组为1、-2、3,现在以3为最终元素的子数组的最大值为3,因为它的前一个元素是-2,以-2为最终元素的最大值是-1..加上一个负数还不如不加..
.........
对于数组中索引为i的元素,以它为终点的子数组的最大值,肯定是max(array[i],以array[i-1]为最终元素的子数组的最大值+array[i])....
嘛..好乱...反正就是这个意思吧....编程之美2.14有讲...
关键代码:
public static void getSubMax(int[] array)
{
int max = Integer.MIN_VALUE;
int Max[] = new int[array.length]; //Max[i]存储以第i位元素为最终元素的子数组的和的最大值...
max = array[0];
Max[0] = array[0];
for(int i = 1; i < array.length;i++) //更新Max[]
{
int num = array[i] + Max[i-1];
if(num > array[i])
Max[i] = num;
else
Max[i] = array[i];
if(Max[i] > max)
max = Max[i];
}
System.out.println(max);
}