No3、求子数组的最大和(数组)

题目:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。

求所有子数组的和的最大值。要求时间复杂度为 O(n)。


例如输入的数组为 1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为 3, 10, -4, 7, 2,

因此输出为该子数组的和 18。


编程之美上面的原题,也是动态规划的一道经典题目,O(n)的时间复杂度就是说要在遍历一遍的过程就获取最大值...


这道题目可以这样理解:

初始数组为1,最大值为1;

数组新增加进-2,数组为1、-2,以-2为最终元素的子数组的最大值为-1,因为1+-2 = -1>-2;

数组新增加进3,数组为1、-2、3,现在以3为最终元素的子数组的最大值为3,因为它的前一个元素是-2,以-2为最终元素的最大值是-1..加上一个负数还不如不加..

.........


对于数组中索引为i的元素,以它为终点的子数组的最大值,肯定是max(array[i],以array[i-1]为最终元素的子数组的最大值+array[i])....

嘛..好乱...反正就是这个意思吧....编程之美2.14有讲...


关键代码:

public static void getSubMax(int[] array)
	{
		int max = Integer.MIN_VALUE;
		int Max[] = new int[array.length];   //Max[i]存储以第i位元素为最终元素的子数组的和的最大值...
		
		max = array[0];
		Max[0] = array[0];
		
		for(int i = 1; i < array.length;i++)     //更新Max[]
		{
			int num = array[i] + Max[i-1];
			if(num > array[i])
				Max[i] = num;
			else
				Max[i] = array[i];
			
			if(Max[i] > max)
				max = Max[i];
		}
		
		System.out.println(max);
	}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值