1.如何利用r(A)与r(Ab)的秩讨论线性方程组的解
1.首先观察是否有解,如果r(A)!=r(Ab)则无解
2.观察未知量的个数,如果r(A)=未知量个数则有唯一解,如果r(A)<未知量个数则有无穷多个解
2.n元齐次线性方程组必有解,因为零解必然存在(如果只有零解那么行列式不等于0)
3.未知量的分类
1.基本未知量:各行首非零元,个数等于r(A)
2.自由未知量:其余未知量,个数为n-r(A)
4.解题步骤:当方程组有无穷多个解时,首先将基本未知量放到等式的左边,再用类似x1=x1,x2=x2的形式将自由未知量补齐,并将方程式的解放在如(x1,x2,x3)的向量中,等于自由未知量分别乘对应的系数再加上方程式最初的常数结果,并用任意值k1,k2等代替自由未知量,那么得到的就是方程的基础解系,而当k1=k2=k3=0时,常数结果组成的向量为t特解