线性代数:高斯消元法

本文介绍了利用矩阵秩r(A)和r(Ab)分析线性方程组解的存在性和数量,包括确定解的唯一性、无穷多解及未知量的分类。详细解释了基本未知量和自由未知量的概念,并给出了求解步骤,特别强调了如何找到基础解系和特解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.如何利用r(A)与r(Ab)的秩讨论线性方程组的解

        1.首先观察是否有解,如果r(A)!=r(Ab)则无解

        2.观察未知量的个数,如果r(A)=未知量个数则有唯一解,如果r(A)<未知量个数则有无穷多个解

2.n元齐次线性方程组必有解,因为零解必然存在(如果只有零解那么行列式不等于0)

3.未知量的分类

        1.基本未知量:各行首非零元,个数等于r(A)

        2.自由未知量:其余未知量,个数为n-r(A)

4.解题步骤:当方程组有无穷多个解时,首先将基本未知量放到等式的左边,再用类似x1=x1,x2=x2的形式将自由未知量补齐,并将方程式的解放在如(x1,x2,x3)的向量中,等于自由未知量分别乘对应的系数再加上方程式最初的常数结果,并用任意值k1,k2等代替自由未知量,那么得到的就是方程的基础解系,而当k1=k2=k3=0时,常数结果组成的向量为t特解

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值