曲率的计算

1.弧段弯曲程度越大曲率越大,转角相同弧段越短弯曲程度越大,弧段相同转角越大弯曲程度越大

2.直线的曲率处处为0,圆的曲率为半径分之一

3.曲率公式:二阶导的绝对值除1+一阶导的平方的和的二分之三次方,而参数方程下,为x的一阶导乘y的二阶导-y的一阶导乘x的二阶导的差除以x的一阶导的平方+y的一阶导的平方和的二分之三次方

4.曲率圆的半径为曲率的倒数

### 关于曲率计算的方法与公式 #### 参数方程下的曲率公式 对于由参数方程 \( \mathbf{r}(t) = (x(t), y(t)) \) 描述的平面曲线,其曲率可以通过下面的公式来表达: \[ k(t)=\frac{|x'(t)y''(t)-y'(t)x''(t)|}{({x'}^{2}(t)+{y'}^{2}(t))^{\frac{3}{2}}} \] 此公式适用于任何可以被参数化的二维平面曲线,并能够有效地衡量这些曲线在每一点处的弯曲程度[^1]。 #### 显式函数形式下的曲率公式 当考虑的是形如 \( y=f(x) \) 的显式函数所代表的一类特殊平面曲线时,则有更简洁的曲率表达方式: \[ k=\frac{|f''(x)|}{(1+(f'(x)^2))^{\frac{3}{2}}} \] 这里利用了链式法则简化了原本复杂的分母结构,使得计算过程更为直观简便[^2]。 #### 平均曲率的概念及其应用领域 除了上述针对单条曲线讨论的情况外,在三维空间中的光滑闭合表面也存在类似的度量标准——即平均曲率。它等于两个主方向上测得的最大最小曲率半径倒数之和的一半;具体来说就是: \[ H=\frac{k_1+k_2}{2} \] 其中\(k_1\) 和 \(k_2\) 分别对应着给定点附近最显著变化趋势的方向上的局部最大/小曲率值[^3]。 ```python import numpy as np def curvature_parametric(t, x_t, dx_dt, d2x_dt2, y_t, dy_dt, d2y_dt2): numerator = abs(dx_dt * d2y_dt2 - dy_dt * d2x_dt2) denominator = pow((dx_dt ** 2 + dy_dt ** 2), 1.5) return numerator / denominator def curvature_explicit(x, f_prime_x, f_double_prime_x): numerator = abs(f_double_prime_x) denominator = pow((1 + f_prime_x ** 2), 1.5) return numerator / denominator ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值