LeetCode 中级 - 递增的三元子序列

这篇博客探讨了如何在给定的未排序数组中找到长度为3的递增子序列。通过分析和编写Java代码,博主展示了如何利用动态规划思想解决这个问题,确保算法的时间复杂度为O(n)且空间复杂度为O(1)。博客中提供了示例输入和输出,帮助读者理解算法的正确性。
摘要由CSDN通过智能技术生成

递增的三元子序列

给定一个未排序的数组,请判断这个数组中是否存在长度为3的递增的子序列。

正式的数学表达如下:

如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1,

使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false 。

要求算法时间复杂度为O(n),空间复杂度为O(1) 。

示例:

输入 [1, 2, 3, 4, 5],

输出 true.

输入 [5, 4, 3, 2, 1],

输出 false.

分析

思路有点类似动态规划的思想,维护一个二元组(first,second),记录第i个元素之前的“最小”递增二元子序列(对后续元素的要求最低如[5,6,2,3,4]会更新[5,6]为[2,3]此时只要后续满足大于3就可以)

  • 当nums[i]小于first时,更新first的值
  • 当nums[i]>first且nums[i]

代码

class Solution {
        public boolean increasingTriplet(int[] nums) {

            int first &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值