【欢迎关注微信公众号:计算机黑科学大全,在对话框回复:PAT乙级真题】获取全部真题详解及代码示例,邀请大家加入PAT算法刷题交流qq群:821388108
个人博客:https://mzwang.top
狼人杀-简单版
题目描述:
以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?
本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?
输入格式:
输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。
输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],…,a[M] 和 B=b[1],…,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出
No Solution
。输入样例1:
5 -2 +3 -4 +5 +4
输出样例1:
1 4
输入样例2:
6 +6 +3 +1 -5 -2 +4
输出样例2:(解不唯一)
1 5
输入样例3:
5 -2 -3 -4 -5 -1
输出样例3:
No Solution
题目来源:PAT乙级1089
作者:CHEN, Yue
单位:浙江大学
问题解决:
解题思想
本题看起来貌似有些复杂,但稍作分析你就会发现,它的逻辑是很简单的。判断符合题意的解(两个狼人是谁)只需要枚举两个狼人,然后判断狼人中是否是只有一个说假话的,而且好人中是否是只有一个说假话的,只要狼人中和好人中各有一个且只有一个说假话的,那么枚举的这两个狼人就是符合要求的。
题目说解不唯一时要输出最小序列解,其实只要你枚举的次序是从小号到大号的,那么第一个满足条件的解一定就是最小序列解,这个不用特别处理。
坑点提醒
None
代码示例(C/C++)
小提示:请将以下代码保存为.cpp
格式(C++程序)左右滑动代码以查看完整代码(复制本文链接到电脑端浏览效果更佳)
#include <iostream>
#include <map>
using namespace std;
struct word {
int u, flag; //u为玩家号,flag标记好人或坏人
};
map <int, word> mp;
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
char ch;
int tmp;
cin >> ch >> tmp;
mp[i].u = tmp;
switch (ch) {
case '+':
mp[i].flag = 1; break;
default:
mp[i].flag = 0;
}
}
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
int num1 = 0, num2 = 0; //狼人中说假话的个数num1,好人中说假话的人数num2
for (int k = 1; k <= n; k++) {
if (k == i || k == j) { //狼人
if ((mp[k].u == i || mp[k].u == j) && mp[k].flag) { //狼人说狼人是好人,谎言!
num1++;
}
else if (mp[k].u != i && mp[k].u != j && mp[k].flag == 0) { //狼人说好人是狼人,谎言!
num1++;
}
}
else { //好人
if ((mp[k].u == i || mp[k].u == j) && mp[k].flag) { //好人说狼人是好人,谎言!
num2++;
}
else if (mp[k].u != i && mp[k].u != j && mp[k].flag == 0) { //好人说好人是狼人,谎言!
num2++;
}
}
}
if (num1 == 1 && num2 == 1) { //此时满足条件
cout << i << " " << j;
return 0;
}
}
}
cout << "No Solution"; //无解
return 0;
}