介绍
快速排序算法,实质上是对冒泡排序算法的一种改进。
核心思想
快速排序的核心思想是通过一遍排序,将需要排序的序列分为两部分(一般以序列的第一个元素作为判断标准),其中一部分所有数据都比另一部分数据小,然后再对这两部分进行相同的操作,最后使所有元素都按顺序排列为止。
算法步骤
- 设置第一个分类标准的参考值为序列的第一个元素 c h e c k check check ,设置最低位指针 l o w low low 和最高位指针 h i g h high high 初始状态 l o w = 0 low=0 low=0, h i g h = n − 1 high=n-1 high=n−1。
- 从 h i g h high high 向前搜索,直到找到第一个小于 c h e c k check check 的值,并将 h i g h high high 指针指向的元素与 l o w low low 指针指向的元素互换。
- 从 l o w low low 向后搜索,直到找到第一个大于 c h e c k check check 的值,并将 h i g h high high 指针指向的元素与 l o w low low 指针指向的元素互换。
- 重复 2、3 步骤,直到 l o w low low 与 h i g h high high 相等为止。
动画演示
特点
快速排序算法的平均时间复杂度为 O ( n log n ) O(n\log n) O(nlogn),在稳定性方面表现出不稳定特点。在辅助空间方面,由于在递归过程中需要栈的参与,所以其辅助空间为 O ( log n ) O(\log n) O(logn) 最坏情况下是 O ( n ) O(n) O(n)。所以在待排序数据量较大,且这些数据比较随机,对于稳定性没有特殊要求的前提下,可以采用该算法.。
代码
C++版
#include <iostream>
#include <vector>
using namespace std;
// 快速排序函数
void quickSort(vector<int>& nums, int left, int right) {
if (left >= right) {
return;
}
int pivot = nums[left]; // 选取基准值
int i = left, j = right;
while (i < j) {
// 从右向左找小于基准值的元素
while (i < j && nums[j] >= pivot) {
j--;
}
if (i < j) {
nums[i] = nums[j];
i++;
}
// 从左向右找大于基准值的元素
while (i < j && nums[i] <= pivot) {
i++;
}
if (i < j) {
nums[j] = nums[i];
j--;
}
}
nums[i] = pivot; // 将基准值放入正确位置
quickSort(nums, left, i - 1); // 递归排序左半部分
quickSort(nums, i + 1, right); // 递归排序右半部分
}
int main() {
int n;
cout << "请输入数组的长度:";
cin >> n;
vector<int> nums(n);
cout << "请输入数组的元素:";
for (int i = 0; i < n; i++) {
cin >> nums[i];
}
quickSort(nums, 0, n - 1);
cout << "排序后的数组:";
for (int i = 0; i < n; i++) {
cout << nums[i] << " ";
}
cout << endl;
return 0;
}
Python版
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less = [x for x in arr[1:] if x <= pivot]
greater = [x for x in arr[1:] if x > pivot]
return quick_sort(less) + [pivot] + quick_sort(greater)
# 测试代码
arr = [9, 5, 2, 7, 1, 8, 3]
sorted_arr = quick_sort(arr)
print(sorted_arr)
总结
快速排序是一种速度快,不稳定的排序算法。如果对你有帮助,点个赞吧球球啦 ^ v ^
(顺便点个关注吧)