HRBUST - 1186 青蛙过河
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是s到t之间的任意正整数(包括s,t)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围s,t,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。 Input有多组测试数据。
对于每组测试数据,第一行四个正整数L, s, t, n(1 <= L <= 10^5, 1 <= s <= t <= 10,1 <= n <= 100),分别表示独木桥的长度,青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数。第二行有n个不同的正整数分别表示这n个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。 Output每组测试数据仅输出一行,包括一个整数,表示青蛙过河最少需要踩到的石子数。 Sample Input10 2 3 5
2 3 5 6 7 Sample Output2
从前往后走,最重要的是for(i=s; i<=l+t-1; i++)当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥,已经是包括跳出部分了
确定每个走过的值,ju[]代表了已经走过的意思,没走过的点不用理会了,没有意义了
#include <bits/stdc++.h>
using namespace std;
int l;
int s,t;
int n;
int i,j;
int dp[100006];//初始化已经为0
int vis[100006];
int ju[100006];
int main()
{
while(cin>>l>>s>>t>>n)
{
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
memset(ju,0,sizeof(ju));
for(i=1; i<=n; i++)
{
int zhong;
cin>>zhong;
vis[zhong]=1;
}
ju[0]=1;//从0开始
int zhong;
for(i=s; i<=l+t-1; i++)
{
zhong=0x3f3f3f;
int flag=0;
for(j=s; j<=t; j++)
{
if( ju[i - j]==1 && i-j>=0)
{
flag=1;
zhong=min(zhong,dp[ i-j ]);
}
//if()
//dp[j]=min(dp[i-j],)
}
//if(vis[])
if( flag )
{
ju[i]=1;
dp[i]=zhong;
if(vis[i]==1)
{
dp[i]++;
}
}
}
int mm=0x3f3f3f;
for(i=l; i<=l+t-1; i++)
{
if(ju[i]==1)
mm=min(mm,dp[i]);
}
//cout<<dp[i]<<endl;
cout<<mm<<endl;
}
}
从后往前的算法,但思想类似,还是小编前面的代码简单好懂!!!!!!!!!!!!!!!
dp[i]代表的是从i开始到结尾的最少用多少个踩点数,所以从后往前开车!从l到0遍历一遍数组!根据哪里是否有节点来++
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[1000010];
int main()
{
int i,l,n,s,t,d,j,m;
while(scanf("%d %d %d %d",&l,&s,&t,&n)!=EOF)
{
memset(dp,0,sizeof(dp));
for(i=0;i<n;i++)
{
scanf("%d",&d);
dp[d]=1;
}
for(i=l;i>=0;i--)
{
m=110;
for(j=s;j<=t;j++)
m=min(dp[i+j],m);
dp[i]+=m;
}
printf("%d\n",dp[0]);
}
return 0;
}