基于自适应似然模型的鲁棒蒙特卡罗定位与单视角相机的尺度不变视觉特征度量定位
在移动机器人领域,自我定位是一个核心问题。不同类型的机器人由于设计原理不同,适用的定位传感器也有所差异。本文将介绍两种定位相关的技术,一种是基于自适应似然模型的鲁棒蒙特卡罗定位,另一种是使用单视角相机的尺度不变视觉特征度量定位。
基于自适应似然模型的鲁棒蒙特卡罗定位
- 偏差计算 :为了计算当前粒子集 $S$ 与真实后验 $S^ $ 的偏差,通过计算从 $S$ 和 $S^ $ 得到的直方图分布之间的 KL 距离来评估。直方图的空间分辨率为 40cm,角度分辨率为 5 度。对于离散概率分布 $p = p_1, \ldots, p_n$ 和 $q = q_1, \ldots, q_n$,KL 距离定义为:
[KL(p, q) = \sum_{i} p_i \log_2 \frac{p_i}{q_i}] - 参数调整 :每当为 $p_{hit}(z | d)$ 选择新的标准差时,会调整权重 $\alpha_{hit}, \alpha_{short}, \alpha_{max}$ 和 $\alpha_{rand}$,以确保所得密度的积分是 1。
- 测量依赖处理 :$p_{hit}(z | d)$ 原则上应编码多个方面以实现鲁棒定位,例如单个测量之间的依赖关系。为减少扫描中各光束之间依赖关系的潜在影响,每次扫描仅使用 10 个角度间隔为 18 度的光束。