对抗攻击面与鲁棒模型分析
1. 随机化多分类器系统
在对抗环境下的模式识别系统设计中,随机化采样技术很有用。Biggio等人将线性分类器的对抗环境扩展到基于随机化的多分类器系统(MCS)。MCS通过装袋和随机子空间采样结合线性基分类器。为提高分类准确性和鲁棒性,会研究MCS的权重分布,使其比单个分类器的权重分布更均匀。
- 攻击场景分析 :
- 最坏情况攻击 :攻击者被假定完全了解特征集、分类器参数和决策函数。
- 非最坏情况攻击 :攻击者对分类器的决策函数了解不完全。
- 分类器鲁棒性评估 :分类器的鲁棒性作为攻击强度的函数进行评估,攻击强度代表攻击者可修改的最大特征数量。在非最坏情况攻击中,攻击者通过高估或低估分类性能中最具判别性特征的重要性来近似特征权重;在最坏情况攻击中,攻击者修改特征以最小化决策函数并最大程度降低分类器性能。
2. 鲁棒聚类模型
对抗聚类问题不能通过解决数据集中随机噪声的聚类稳定性标准来解决,而需要考虑有针对性的对抗性操纵。Biggio等人针对单链接层次聚类设计了投毒和混淆攻击:
- 投毒攻击 :攻击者的目标是将对抗性示例注入聚类质量度量中。
- 混淆攻击 :攻击者的目标是通过操纵特征值将数据样本隐藏在现有聚类中。在这些攻击中,聚类不仅被定义为分区聚类算法的硬分区(和软分区),还被定义为链接型聚类算法中的主导集(和子集的参数化层次结构)。同时,Biggio等人还通过非