情绪调节策略影响住院医师职业倦怠

医护住院医师的情绪调节策略、工作负荷条件与职业倦怠

摘要

背景 :职业倦怠综合征在医护住院医师中非常普遍。针对工作负荷条件的干预措施对职业倦怠的影响有限。本研究旨在探讨两种情绪调节策略——情绪压抑和认知重评——对住院医师职业倦怠的影响,同时控制工作负荷因素。
方法 :参与者为105名住院医师(女性占68.6%;平均年龄 = 27.5,SD = 3.0)。他们完成了关于工作量、职业倦怠和情绪调节的测量。本研究为横断面设计。
结果 :情绪抑制与较高的职业倦怠相关(去人格化量表;β = 0.20,p < 0.05,CI 0.15–2.48),而认知重评与较低的职业倦怠相关(更高的个人成就感;β = 0.35,p < 0.01,CI 0.16–2.56),即使在控制了人口统计学和工作负荷因素后仍显著。我们发现了工作负荷变量(主管支持和患者接诊时长)与情绪调节之间的交互作用(p < 0.05)。
结论 :工作负荷、情绪调节与职业倦怠之间的关系似乎较为复杂。也就是说,相似的工作条件可能因住院医师的情绪调节策略不同而产生不同程度的职业倦怠。这可能部分解释了为何基于调整工作负荷的现有干预措施对职业倦怠的影响较为有限。结果还支持将情绪调节训练纳入针对住院医师期间职业倦怠的预防与治疗项目中。

关键词 :情绪调节;情绪抑制;认知重评;职业倦怠;住院医师培训

1. 引言

职业倦怠在医疗专业人员(如护士和医生)中是一个严重问题[1–3]。职业倦怠与医疗服务提供者诸多不良后果相关,例如病假缺勤增加、人员流动加剧、心理病理学和身体并发症风险升高,以及医疗服务提供的质量下降[4,5]。此外,这种对压力的无效应对方式可能对患者结局产生负面影响(如治疗依从性差、治疗满意度降低)。Furthermore,这些潜在的不利结果可能会进一步加重医疗专业人员的压力,从而形成恶性循环[6]。

职业倦怠问题在住院医师培训期间似乎尤为令人担忧,有36%到76%的住院医师在培训期间的某个阶段经历过这种综合征[7,8]。已有多种因素被提出可能影响住院医师期间的职业倦怠,包括性别、年龄、婚姻状况、文化、工作量、体力活动和应对策略等[9–12]。其中,工作量干预措施受到的关注最多。然而,现有的干预措施对降低职业倦怠水平效果有限[1],公共时间减少计划也未能解决这一问题[13]。

临床和组织研究均强调了情绪调节策略对个体结果的重要性,包括医疗专业人员的职业倦怠[14–17]。然而,这些策略在住院医师职业倦怠中的作用,以及其在工作量等已被探讨的变量之外的独立贡献,尚不明确。本研究旨在提供证据,阐明情绪调节策略对住院医师职业倦怠的影响,同时控制重要的协变量。情绪调节是一个复杂的现象,受到神经内分泌、神经学、遗传、人格和情境因素相互关联的影响[18–22]。在本研究中,我们重点关注这一复杂因素网络中的两种重要调节机制,即情绪抑制和认知重评[23]。

情绪调节可以被定义为“个体影响自身产生何种情绪、何时产生以及如何体验和表达这些情绪的过程”[24]。自从霍赫希尔德博士的开创性工作以来[25],情绪调节策略通常被划分为表层行为(表面)或深层行为。在表层行为中,情绪表达会调整为他人所期望的状态,但内在感受并不一定发生改变,因此通常会出现内在感受与被要求表现出的情绪之间的不一致。相比之下,在深层行为中,个体会主动调节并调整内在感受以匹配外在表现[26]。情绪抑制和认知重评分别是表层行为和深层行为最常见的方法。情绪抑制的特点是抑制真实感受,转而表现出期望的情绪[27]。相反,采用认知重评的个体则会重新评估情境,使这种新的评估引发所需的情绪[14,28]。总体而言,像情绪抑制这样的表层行为策略通常与较差的结果相关,而深层行为则被视为一种推荐的做法[29,30]。

在医学住院医师的背景下,提供了情绪抑制和认知重评策略的一个示例。在组织环境中,情绪调节通常被理解为员工如何管理情绪以适应工作要求[31]。住院医师面临高责任要求,需要处理生死情况,承受患者及家属的高压要求,且往往没有足够时间对日常挑战做出周密应对。上述情况加上住院医师通常较为年轻且普遍缺乏专业经验,常常导致不安全感[32]。在这种情境下,采用情绪抑制策略的做法可能是不惜一切代价试图在他人心目中表现得自信,或在患者面前使用专业术语,以此展示能力和知识[33]。相反,在相同情境下,住院医师也可以提醒自己仍处于培训阶段,缺乏特定知识和能力是正常的,并以此激励自己不断进步,这就是认知重评策略的一个例子。

在本研究中,我们探讨了这两种情绪调节策略(即情绪抑制和认知重评)与医院住院医师职业倦怠之间的关系,以及它们在以往研究的风险和保护因素(如工作量和人口统计学变量)之外的贡献程度,这些因素将作为协变量使用。根据一些研究提出的有必要探索促进或阻碍职业倦怠过程的因素[34],我们还将检验情绪调节与职业倦怠之间的关系是否受到这些协变量的情境性影响(即调节作用)。

假设1(H1) 。我们预期,与情绪抑制相比,认知重评与较低的职业倦怠水平相关,即使在调整了人口统计学和工作量变量之后也是如此。

假设2(H2) 。我们还假设情绪调节策略与某些协变量之间存在交互作用,即情绪调节策略对职业倦怠的影响将取决于其发生的情境,这与以往的临床研究一致[35]。

2. 材料与方法

2.1. 参与者

参与者特征的描述见表1。共有105名来自西班牙瓦伦西亚巴伦西亚临床医院的住院医师参与了本研究(女性占68.6%;年龄范围 = 21–39岁;平均年龄 = 27.5,标准差 = 3.0)。样本量根据多元回归分析所需样本量的建议是充足的[36–38]。调查共发送给150人(回复率为70.0%)。当时在外部医院或休假的住院医师被排除在外。大多数住院医师参加了临床专业项目(83.0%)。第四年住院医师培训允许有一段在外部医院培训的时间,这解释了该年份住院医师人数减少的原因。由于职业倦怠问题在这两个专业角色中均较为常见且相似,因此邀请护士和医生均参与了研究[30]。

表1. 样本的人口统计学特征

变量 n = 105 %
性别(女性) 68.6
婚姻状况
单身 88.6
已婚 11.4
国籍
西班牙人 84.9
拉丁美洲人 10.3
其他欧洲人 4.7
专业
医学 62.9
外科 16.2
实验室 7.5
护理 14.5
住院医师年份
第一年 30.5
第二年 41.0
第三年 22.9
第四年 5.7

2.2. Procedure

所有住院医师年份的医学和护理住院医师均收到一份在线问卷以及参与邀请。计划进行两个阶段的数据收集,以增加参与者数量。这两个阶段分别为2013年2月和2014年3月(第二次仅选取未回应者和新住院医师)。每次调查在线开放一个月。当两个阶段结束后,信息被下载并分析。所有执行的程序均符合1964年赫尔辛基宣言、研究方案和良好临床实践。研究中所有参与者均获得知情同意,并保证了隐私(未获取任何可识别个人信息)。参与无经济补偿。

2.3. 测量工具

2.3.1. 马斯拉奇倦怠量表(MBI)

我们使用了西班牙语版本的经验证的马斯拉奇倦怠量表(MBI)[39]。MBI包含22个项目,代表职业倦怠综合征的三个维度:情绪耗竭(9个项目)、人格解体(5个项目)和个人成就感(8个项目)。情绪耗竭评估因工作而感到疲劳和情绪超负荷的感受。人格解体反映个体在工作中对所照顾、服务或指导的人表现出冷漠和缺乏敏感的程度。个人成就感指在工作中感知到的个人能力和成就。整体倦怠得分也可通过将所有子量表得分相加计算得出[40]。然而,更推荐使用子量表[34]。MBI被认为是测量职业倦怠的“金标准”工具,并已成为最常用且应用最广泛的评估工具[8,41]。我们采用了其他职业倦怠研究中使用的截断点来分类存在情绪耗竭、人格解体和个人成就感风险的住院医师[42]。这些截断点分别为 >27、>10 和 <33,分别用于高情绪耗竭、高去人格化和低个人成就感。中等程度的倦怠由以下得分范围表示:19至26(情绪耗竭),6至9(人格解体),以及34至39(个人成就感)。低于18和5的评分分别被认为反映低情绪耗竭和人格解体,而高于40的评分则被认为表示高个人成就感。该策略基于MBI得分与心理病理学水平及精神疾病诊断之间的对应关系[43]。

2.3.2. 情绪调节问卷(ERQ)

我们使用ERQ(情绪调节问卷)来评估情绪调节策略[44]。该量表此前已被翻译成西班牙语,并具有良好的信度和效度结果[45]。该问卷包含十个条目,用于评估本研究考察的两种调节策略:情绪抑制(4个条目)和认知重评(6个条目)。每个条目采用1到7级评分范围,其中1表示完全不同意,7表示完全同意。

2.3.3. 人口统计学与工作量信息

如前所述,一些研究发现职业倦怠与人口统计学变量和工作相关特征相关[9]。因此,在在线调查中,我们纳入了人口统计学信息以及工作负荷数据和住院医师的主观工作体验。在在线调查中专门设计了一组问题,以评估以下变量(见表S1和S2):

  1. 人口统计学特征 :性别、年龄、婚姻状况、国籍、受抚养人数。
  2. 工作负荷
    - 每月医院值班班次数(值班班次为24小时)。
    - 上次值班以来的天数
    - 每天与患者直接互动的小时数
    - 每天在医院的小时数。
    - 院外工作:每天用于在工作之外学习、准备临床会诊、课程或科学写作的时间(小时数)。
  3. 主观工作体验
    - 对任务责任的感知。
    - 对任务难度的感知。
    - 来自上级支持的感知。
    - 来自同级支持的感知

在在线调查中,问题按以下顺序进行:人口统计学特征、工作量、主观工作体验、MBI(职业倦怠量表)和ERQ(情绪调节问卷)。

2.4. 数据分析

首先,我们进行了描述性分析,以报告样本中的职业倦怠水平。接着,构建了一个多变量回归模型,用于解释每个职业倦怠子量表的方差。在第一阶段中,将人口统计学变量、工作量数据和主观工作体验作为协变量纳入模型。然后,在第二阶段中加入两种情绪调节策略,即情绪抑制和认知重评,以量化在控制协变量后情绪调节策略所解释的职业倦怠方差量。最后,在第三阶段中加入了协变量与情绪调节策略之间的交互作用,以探讨情绪调节策略与职业倦怠之间的关系是否因协变量得分的不同而有所差异(即调节效应)。我们对三个职业倦怠子量表分别采用了逐步多元回归程序。在此,仅报告最终模型,且为清晰起见,仅包含相关预测因子。

3. 结果

住院医师的职业倦怠水平见表2。样本中约有三分之二的人员表现出高职业倦怠症状。

表2. 样本中职业倦怠的分布

n = 105 情绪耗竭 人格解体 个人成就感
High 62.9% 68.6% 67.6%
中等 25.7% 26.7% 22.9%
Low 11.4% 4.8% 9.5%

情绪调节策略与职业倦怠之间的双变量关联以及量表的内部一致性见表3。使用情绪抑制策略与人格解体相关(r = 0.22;p < 0.05),而使用认知重评策略则与更高的个人成就感相关(r = 0.35;p < 0.001)。所有量表均表现出良好的内部一致性。

表3. 职业倦怠与认知策略的心理测量学特性及皮尔逊相关系数

心理测量学特性 皮尔逊相关系数
克隆巴赫 α Mean SD
职业倦怠
1. 情绪耗竭 0.80 29.8 9.0
2. 人格解体 0.88 12.7 5.3
3. 个人成就感 0.82 41.1 5.3
4. 职业倦怠全量表 0.89***
情绪调节策略
5. 抑制 0.81 13.1 5.7
6. 重新评估 0.73 28.3 6.9

注意:10名住院医师未完成完整的评估方案,因此无法进行分析。 p < 0.05; ** p < 0.001。

职业倦怠子量表的预测

预测倦怠维度的多变量回归结果见表4–6。关于情绪耗竭(表4),当参与者感受到主管的支持、每天治疗患者的时间更长以及感知到的工作困难较小时,其报告的情绪耗竭水平显著更低。该模型解释了疲劳水平21.7%的方差。

在考虑工作条件后,没有任何职业倦怠变量能够解释情绪耗竭的额外方差。

关于人格解体,当住院医师投入更多时间治疗患者时,他们报告的人格解体水平较低(表5)。当他们报告较高的认知重评水平时,这种关联更强(我们发现认知重评的使用与治疗患者的时间之间存在正向交互作用)。当参与者感知到来自主管的更多支持时,他们也报告了较低的人格解体水平。另一方面,较高水平的情绪抑制与较高水平的人格解体相关。该模型解释了人格解体22.3%的方差。

个人成就感分量表与认知重评呈正相关。有趣的是,当住院医师感知到主管支持水平较高时,这种关联较弱。在情绪抑制得分较高的参与者中,这种关系也较弱。我们还发现情绪抑制和主管支持在预测个人成就感方面存在交互作用。由于两个预测因子的系数均为负值(不显著,未在表6中报告),该交互作用意味着,当住院医师感知到来自主管的支持较多时,情绪抑制策略与个人成就感之间的负向关系更强。该模型解释了个人成就感34.8%的方差。

表4. 情绪耗竭子量表的线性回归模型结果

n = 88 B(非标准化) CI(95%) 标准误 B(标准化) t
主管支持 −3.00 −4.85, −1.15 0.93 −0.32 −3.23**
感知难度 4.46 2.21, 6.70 1.13 0.38 3.94***
每日小时数 患者护理 −0.76 −1.40, −0.11 0.32 −0.23 −2.34*
  • p < 0.05; p < 0.01; * p < 0.001。

表5. 人格解体分量表的线性回归模型结果

n = 88 B(非标准化) CI(95%) 标准误 B(标准化) t
每日接诊患者小时数 care −0.69 −1.08, −0.30 0.20 −0.36 −3.53***
主管支持 −1.36 −2.44, −0.28 0.54 −0.25 −2.51*
抑制 1.12 0.05, 2.19 0.54 0.20 2.07*
重新评估 * 每日 患者护理小时数 1.31 0.15, 2.48 0.59 0.22 2.24*
  • p < 0.05;*** p < 0.001。

表6. 个人成就感分量表的线性回归结果

n = 88 B(非标准化) CI(95%) 标准误 B(标准化) t
重新评估 1.87 0.76, 2.97 0.55 0.35 3.37**
抑制 * 重新评估 −1.68 −2.57, −0.78 0.45 −0.35 −3.72***
重新评估 * 主管支持 −1.31 −2.16, −0.46 0.43 −0.30 −3.08**
抑制 * 主管支持 1.36 0.16, 2.56 0.60 0.24 2.25*
  • p < 0.05; p < 0.01; * p < 0.001。

4. 讨论

根据以往的研究,住院医师的职业倦怠估计值普遍较高,高达70%[41,46]。我们在样本中发现了类似水平的职业倦怠,表明许多住院医师在这一特定培训期间难以应对负面情绪。总体而言,我们的结果表明,情绪调节策略与住院医师的职业倦怠相关,这与以往研究一致,即情绪管理对医疗专业人员至关重要[17,47,48]。具体而言,情绪抑制与人格解体相关,而认知重评与个人成就感相关。这些关联的方向符合预期;即情绪抑制与更高的职业倦怠相关,而认知重评策略则与较低水平的职业倦怠综合征相关。最重要的是,在本研究中,当在多元回归模型中控制人口统计学变量和工作相关因素后,这两种策略的影响仍然显著。

情绪抑制是一种情绪调节策略,其特征是为了符合特定情境下的要求而压抑真实的情绪[14]。然而,这种策略在心理上代价较高,因为它并未改变对情境的潜在的认知评估。以往在组织环境中的研究已表明,情绪抑制策略与职业倦怠水平的升高相关[49]。本研究的结果表明,在医院住院医师中可能存在类似情况。有趣的是,我们的分析提示,这种情绪调节策略可能主要导致人格解体。去人格化量表用于测量个体在工作中对需要照顾、服务或指导的人表现出冷漠和缺乏感情的倾向[41]。我们的结果表明,将隐藏自身真实的负面情绪(如对失败的恐惧、不安全感)作为一种保护性策略,可能会增加住院医师与患者之间的情感距离。由于医疗专业人员的共情能力已被证实可预测患者的良好结局[50],因此我们认为,住院医师使用情绪抑制作为情绪调节策略可能是非适应性的,因其与人格解体呈正相关。

与情绪抑制不同,我们的结果支持认知重评可能是医院住院医师的一种适应性情绪调节策略。认知重评涉及对情境进行重新评估,赋予其新的意义,从而改变其引发的情绪反应。尽管在初期可能需要付出更多努力来寻找替代性解释,但从长远来看,这似乎是一种更优的策略。以往探讨认知重评与个人成果之间关系的研究尚无定论[49]。然而,情绪调节理论指出,认知重评策略优于情绪抑制,因为只有前者能够改变主观感受的情绪[14]。我们的结果支持这一假设。具体而言,我们的分析表明,采用认知重评策略的住院医师往往表现出更高的个人成就感。我们认为,通过重新评估情境以改变自身感受的能力,可能导致个体对环境的适应更为成功。对于医院住院医师而言,这似乎有助于增强工作中的个人成就感受。但需要注意的是,由于本研究数据的相关性本质,我们无法从中得出因果结论。

本研究的一个有趣发现是,某些职业倦怠预测因子(即情绪调节策略和工作相关因素)与职业倦怠之间的关系可能比我们想象的更为复杂。例如,与患者相处的时间长短可能与较低的人格解体水平相关,但这种效应似乎会与认知重评策略产生协同作用:采用较高水平认知重评策略的住院医师,似乎能从更多时间的直接患者护理中获益更多。本研究未评估具体接诊的患者数量,而是关注了与患者相处的时间。或许,与患者相处时间较少可能意味着更大的时间压力,这可以解释为何投入更多时间照护患者的住院医师其人格解体水平更低。

我们的分析还表明,情绪抑制策略与职业倦怠之间的关系可能会受到工作相关因素的调节。具体而言,尽管认知重评情绪调节策略与较高的个人成就感水平相关,当住院医师感知到主管的支持水平较低时,这种关联性更强。研究表明,拥有支持型主管通常与员工更好的结果相关[51,52]。结合现有研究,我们的结果表明,拥有支持型主管还可能减少使用情绪调节策略(即认知重评)的需求。当主管不提供支持时,使用这种情绪调节策略对住院医师的职业倦怠可能更为重要。

社会人口学因素和工作条件与住院医师的职业倦怠之间尚未表现出一致的关联性[9]。例如,一些研究发现种族/民族、主要语言和文化背景与住院医师的职业倦怠水平相关[53,54],但其他研究则未发现此类关联[55,56]。同样,某些研究指出职业倦怠与某些工作条件(如工作时长和每周值班夜数)存在关联[57],而另一些研究却未发现这种关联[55,56],并且减少工作时长的措施并未被证明能够降低职业倦怠[58]。我们的结果可能为这些不一致现象提供一种解释。具体而言,这些变量对职业倦怠水平的影响可能受到住院医师情绪调节风格的调节作用。

本研究当然存在一些局限性。首先,护理住院医师的数量明显少于医学住院医师,这限制了研究结果在护理人群中的普适性。然而,护士与医生的职业倦怠问题往往相似[59],因此本研究的结果可能对这两个专业群体均有参考价值。与其他单中心研究类似,本研究的局限性之一在于研究结果可能无法推广到具有不同当地文化或组织环境的其他情境中,我们的结果需要在不同背景下进一步验证。当前研究的另一局限在于所采用的统计方法(逐步多元回归)是自下而上、以数据驱动而非理论驱动的。选择该方法是因为本研究具有探索性质(对交互作用无明确假设),并希望获得一个变量数量更可控、更为简洁的模型。此外,由于本研究为横断面设计,无法进行因果归因。需要指出的是,在我们的模型中作为重要预测因子的主管支持,可能与其他变量(如住院医师的工作经历[60])存在混杂。

未来的研究应:(a)识别这两个变量各自的独立效应;(b)探讨本研究未包含的心理和情境变量的影响,如人格特质、分配的任务/工作场所类型以及照护患者数量;(c)检验其他人口统计学变量(如年龄和性别)的调节作用。

5. 结论

尽管存在上述研究的不足,我们的结果可能具有重要的研究和临床意义。从研究角度来看,结果表明在解释职业倦怠时,应同时考虑与工作相关变量和情绪调节变量,因为两者均可为预测该综合征提供独特的方差贡献。此外,研究还揭示职业倦怠确实是一个复杂的构念,需要心理因素与工作条件之间的交互作用模型。本研究也可带来临床意义。一项元分析得出结论:现有针对心理健康服务提供者的干预措施,尤其是以组织为导向的干预措施,效果非常有限[51]。该研究还指出,需要更广泛的干预措施,特别是以个人为导向的干预方式。我们认为,我们的研究结果与这些结论一致,并支持将一个新的以个人为导向的干预目标——情绪调节——纳入旨在降低住院医师职业倦怠的干预项目中。重要的是,我们的研究结果还支持治疗应实现个性化,以最大化其有效性。例如,提高主管支持并减少情绪压抑的使用可能最有助于缓解人格解体问题,而针对个人成就感不足的个体,则可能更适宜采用改善认知重评的干预方式。同样,调节分析显示,某些举措(即,减少患者护理小时数)可能并不适合所有个体(例如,采用高认知重评策略且投入更多患者护理时间的住院医师职业倦怠程度较低),这对个性化干预措施可能也具有重要意义。

随着科技的不断发展,计算机视觉技术在各个领域中得到了广泛的应用。其中,图像处理是计算机视觉中的一个要分支,它通过对图像进行数字化处理,提取出其中的有用信息,为后续的分析和应用提供支持。而裂缝面积识别系统是图像处理中的一个要应用,它可以对裂缝进行自动化的检测和识别,为工程领域中的裂缝维护和修复提供帮助。 裂缝是建筑物和基础设施中常见的问题,它们的存在会对结构的稳定性和安全性产生影响。因此,及早发现和修复裂缝是非常要的。然而,传统的裂缝检测方法通常需要人工参与,费时费力且容易出错。因此,开发一种自动化的裂缝面积识别系统具有要的意义。 Python是一种简单易学且功能强大的编程语言,而OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理和分析功能。将Python和OpenCV结合起来,可以快速开发出高效的图像处理算法,为裂缝面积识别系统的开发提供了便利。 本研究的目标是开发一个基于Python和OpenCV的裂缝面积识别系统,并提供相应的部署教程和源码。该系统将通过图像处理算法自动检测和识别裂缝,并计算出裂缝的面积。通过该系统,用户可以快速准确地获取裂缝的面积信息,为后续的维护和修复工作提供参考。 本研究的意义主要体现在以下几个方面: 提高工作效率:传统的裂缝检测方法需要人工参与,费时费力且容易出错。而基于Python和OpenCV的裂缝面积识别系统可以实现自动化的裂缝检测和识别,大大提高了工作效率。 提高准确性:人工参与的裂缝检测容易受到主观因素的影响,结果的准确性无法保证。而基于图像处理算法的裂缝面积识别系统可以准确地计算出裂缝的面积,提高了结果的准确性。 降低成本:传统的裂缝检测方法需要大量的人力和时间投入,成本较高。而基于Python和OpenCV的裂缝面积识别系统可以实现自动化的裂缝检测和识别,降低了成本。 推动技术发展:本研究将Pyt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值