【算法】值域线段树

值域线段树就是线段,只不过它的节点代表的东西与普通的线段树不同。

比如给了一个数列,值域线段树的每个节点有三个性质:l,r,val,其中val代表这组数列中数值在 l 和 r 之间的数的个数。

值域线段树结点下标不连续。

结合[BJOI2016]回转寿司分析

题目大意:
现在有一个 N 个数组成的数列 {ai} ,求有多少段的和在 [L,R] 内。
1<=N<=105 , |ai| <=105 , 1<=L,R<=109

我们记前 i 个数之和为 s[i]。
满足条件的一段区间 [l,r] 符合 L <= s[r]-s[l-1] <= R
移项,得 s[r]-R <= s[l-1] <= s[r]-L
这样,我们只需找到对每一个 r ,有多少个 l-1 满足上式,加起来就好了。
我们可以在每次加入 s[r] 之前,在线段树中找符合条件的 s[l-1] 的个数。

但现在又有一个问题,s[i] 的范围是 -1010~1010,不可能见一个有这么多叶子结点的线段树。s[i] 最多有 105 个,剩下的没有取到的值不建立节点,这样空间就足够了,这也就决定了节点下标是不连续的。

大概思路就是这样,具体细节见下面的代码。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;

const int N=1e5+10;
const LL INF=1e10;
int n, l, r;
LL s[N];
int cnt=0;

class Node
{
public:
	int num, lson, rson;
	Node(int num=0, int lson=0, int rson=0){ this->num=num; this->lson=lson; this->rson=rson; }
}nd[N*70];

void update(int &rt, LL l, LL r, LL val)	//加入一个值
{
	if(!rt) rt=++cnt;
	nd[rt].num++;
	if(l==r) return;
	LL mid=l+r>>1;
	if(val<=mid) update(nd[rt].lson,l,mid,val);
	else update(nd[rt].rson,mid+1,r,val);
}

LL query(int rt, LL l, LL r, LL L, LL R)	//查询当前数值在[L,R]内的数的个数
{
	if(!rt||l>R||L>r) return 0;
	if(l>=L&&r<=R) return nd[rt].num;
	LL mid=l+r>>1;
	if(mid>=R) return query(nd[rt].lson,l,mid,L,R);
	else if(mid<L) return query(nd[rt].rson,mid+1,r,L,R);
	else return query(nd[rt].lson,l,mid,L,mid)+query(nd[rt].rson,mid+1,r,mid+1,R);
}

int main()
{
	scanf("%d%d%d", &n, &l, &r);
	for(int i=1; i<=n; ++i)
	{
		scanf("%lld", s+i);
		s[i]+=s[i-1];
	}
	
	LL res=0;
	int root=++cnt;
	update(root,-INF,INF,0);
	for(int i=1; i<=n; ++i)
	{
		res+=query(root,-INF,INF,s[i]-r,s[i]-l);
		update(root,-INF,INF,s[i]);
	}
	printf("%lld\n", res);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值