2287: 【POJ Challenge】消失之物
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 804 Solved: 455
[ Submit][ Status][ Discuss]
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
3 2
1 1 2
1 1 2
Sample Output
11
11
21
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
Source
--------------------------------------------------------
算法:
DP,01背包
做法:
如果没有物品缺失,那就是简单的背包。现在要求缺了第 i 个物品时能装 j 空间的方案数,我们可以运用补集思想,这个方案数等于不缺 i 物品时的方案数减去一定有 i 物品时的方案数。设 f[j] 表示所有物品都可以用时的方案数,g[i][j]表示不选 i 物品而装 j 空间时的方案数,则有
j<w[i] : g[i][j] = f[j]
j>=w[i] : g[i][j] = f[j]-g[i][j-w[i]]
当 j<w[i] 时,选物品时不可能选中 i 物品,所以此时 g[i][j]=f[j];而当 j>=w[i] 时,f[j] 中就有选 i 物品而带来的方案,而此方案正好等于 g[i][j-w[i]] (如果选了 i 物品,那么选 i 物品之前的空间是 j-w[i],而且每一个物品只能选一次,i 不可能被选两次,所以选了 i 物品的方案数就是 g[i][j-w[i]])。
这样,这一道题就运用补集思想巧妙解决了!
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=2010, M=2010;
int n, m;
int w[N], f[M], g[M];
int main(){
scanf("%d%d",&n,&m);
for(int i=1; i<=n; ++i) scanf("%d",&w[i]);
f[0]=1; // 什么都不选也是一种方案
for(int i=1, j; i<=n; ++i) for(j=m; j>=w[i]; --j) f[j]=(f[j]+f[j-w[i]])%10;
for(int i=1, j; i<=n; ++i){
for(j=0; j<w[i]; ++j) g[j]=f[j];
for(j=w[i]; j<=m; ++j) g[j]=(f[j]-g[j-w[i]]+10)%10;
for(j=1; j<=m; ++j) printf("%d",g[j]);
printf("\n");
}
}