深度学习实践8:Attention实现

import torch
from torch import nn
from d2l import torch as d2l

带掩码的softmax函数,原因是在现实中query不应该能看到后面的key,所以要对后面的key进行掩码操作,即将其值赋值为0。再使用softmax函数进行处理

def masked_softmax(X, valid_lens):
    """通过在最后一个轴上遮蔽元素来执行 softmax 操作"""
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)

接下来展示两种注意力分数的计算:第一种是加性注意力:将query和key合并起来进入一个单输出单隐藏层的mlp。 

#@save
class AdditiveAttention(nn.Module):
    """加性注意力"""
    def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
        self.w_v = nn.Linear(num_hiddens, 1, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, queries, keys, values, valid_lens):
        queries, keys = self.W_q(queries), self.W_k(keys)
        # 在维度扩展后,
        # queries的形状:(batch_size,查询的个数,1,num_hidden)
        # key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
        # 使用广播方式进行求和
        features = queries.unsqueeze(2) + keys.unsqueeze(1)
        features = torch.tanh(features)
        # self.w_v仅有一个输出,因此从形状中移除最后那个维度。
        # scores的形状:(batch_size,查询的个数,“键-值”对的个数)
        scores = self.w_v(features).squeeze(-1)
        self.attention_weights = masked_softmax(scores, valid_lens)
        # values的形状:(batch_size,“键-值”对的个数,值的维度)
        return torch.bmm(self.dropout(self.attention_weights), values)

queries的维度 =(批量大小 * 时间步大小 * 特征长度)(2,1,20)

keys的维度 =(批量大小 * 时间步大小 * 特征长度) (2,10,2)

这里时间步大小就是一个句子的长度,比如两个句子,第一个句子对第二个句子做Attention,之前看论文transformer的时候,因为任务是机器翻译,query和key的句子是相同的。而这里说的是普遍的,两个句子不同的情况,也就是时间步大小不一定相同。

那么在queries和keys各自经过参数矩阵W的映射之后,其维度变成了(批量大小* 时间步大小 * h)

queries和keys的时间步还是不相等,没法直接相加在做tanh(),所以这里利用了矩阵的广播机制

features = queries.unsqueeze(2) + keys.unsqueeze(1)

queries在第二个维度增加一维,变成(批量大小 * 时间步大小 * 1 * h)

keys在第一个维度增加一维,变成(批量大小 * 1 * 时间步大小 * h)

然后就可以相加了。

经过加和以及tanh(),features的维度 = (批量大小 * q时间步大小 * k时间步大小 * h) (2,1,10,8)

scores = self.w_v(features).squeeze(-1)

(批量大小 * q时间步大小 * k时间步大小 * h)(2,1,10,1)削掉最后一个维度(2,1,10)

第二种是点积和:直接将query和key做内积(比较常用)。代码如下(这里用的是缩放点积):

#@save
class DotProductAttention(nn.Module):
    """缩放点积注意力"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,“键-值”对的个数,d)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # keys要做转置才能乘 
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值