codeforces1154F. ShovelsShop DP

( ̄︶ ̄)↗ 走你

一共有N把铁锨,现在要买K把铁锨。可以分好几次买,如果一次买到一些特定值x时,会减免掉前y小花费的铁锨,求最小花费。


还是太菜了,这么一道简单的dp想了好久,还是最擅长的领域T_T
首先,我们要确定一下数据的范围,根据贪心思想,我们是可以证明,我们只需要考虑售价前k小的k把铁锨,其他的铁锨完全不用考虑,因为是不会买的。证明太懒了就不放了。
这样就把N的范围缩小到2000以内,顺便把M中方案中, x>2000的也去掉。在给的样例中我们注意到,当我们买同样的个数时,可能有不同的优惠数量,在这里当然是只记免费数量最多的哪一种了,毕竟一直白给一直爽。
现在开始设计DP,最开始当然是考虑能否直接求出答案,但是当时不知道怎么想的,求了在买了i件前最多能便宜多少。
转移方程就是,从第i件起,包括第i件在内,连续买一个可以优惠的件数purNum,记录最大能减免的金额。注意DP[i]表示第i件前,第i件正准备买,但并没有买

dp[i+purNum]=max(dp[i+purNum],dp[i]+sum[i+mostFree[purNum]-1]-sum[i-1]);

#include <stdio.h>
#include <climits>
#include <cstring>
#include <time.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <utility>
#include <vector>
#include <string>

#define INF 0x3f3f3f3f
#define ll long long
#define Pair pair<int,int>
#define re return

#define getLen(name,index) name[index].size()
#define mem(a,b) memset(a,b,sizeof(a))
#define Make(a,b) make_pair(a,b)
#define Push(num) push_back(num)
#define rep(index,star,finish) for(register int index=star;index<finish;index++)
#define drep(index,finish,star) for(register int index=finish;index>=star;index--)
using namespace std;
const int maxn=2e5+5;

int N,M,k;
int store[maxn],sum[2048];
int mostFree[2048];
vector<int> numKind;
map<int,bool> mapping;
int dp[2048];
inline bool cmp(const int &a,const int &b);
void show(int* arr,int len);
int main(){
    ios::sync_with_stdio(false);
    cin.tie(NULL);

    cin>>N>>M>>k;
    rep(i,1,k+1){
        mostFree[i]=-1;
    }
    rep(i,1,N+1){
        cin>>store[i];
    }
    int commonA,commonB;
    rep(i,0,M){
        cin>>commonA>>commonB;
        if(commonA>2000)
            continue;
        if(!mapping[commonA]){
            mapping[commonA]=true;
            numKind.Push(commonA);
        }
        mostFree[commonA]=max(commonB,mostFree[commonA]);
    }

    sort(store+1,store+N+1);

    sum[0]=0;
    rep(i,1,k+1){
        sum[i]=sum[i-1]+store[i];
    }
    int all=sum[k];

    rep(i,1,k+1){   //this position not include
        //not use any pair
        dp[i+1]=max(dp[i+1],dp[i]);

        //use pair
        rep(j,0,numKind.size()){
            int purNum=numKind[j];
            if(i+purNum<=k+1){
                dp[i+purNum]=max(dp[i+purNum],dp[i]+sum[i+mostFree[purNum]-1]-sum[i-1]);
            }
        }
    }

    cout<<all-dp[k+1]<<endl;

    re 0;
}
inline bool cmp(const int &a,const int &b){
    re a>b;
}

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值