KMP

KMP

有一道很简单的题引入:

Description
给出两串字符串A、B(1<=length B<=length A<=100000),每行一个字符串,求B串在A串之中出现的次数。
Input
abcbcbcbcbabcbcbcbabcbcbcbcda
bcb
Output
10
Data Constraint
30%:1<=length B<=length A<=1000
100%:1<=length B<=length A<=100000

30:

这道题想得到30分很容易,直接暴力就可以了:
令n=length A,m=length B
枚举i,判断A[i~i+m-1]是否等于B,是则增加答案。
Codes:

#include<cstring>
#include<cstdio>
using namespace std;

int n,m,ans=0;
char a[101],b[101];

int main()
{
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    scanf("%s\n%s\n",a+1,b+1);
    n=strlen(a+1);
    m=strlen(b+1);
    for(int i=0;i<=n-m;i++)
    {
        bool p=1;
        for(int j=1;j<=m;j++)if(b[j]!=a[j+i]){p=0;break;}
        if(p)ans++;
    }
    printf("%d",ans);
}

但100怎么办?这就涉及到了KMP。

KMP是一种求字符串匹配的算法,由Knuth、Morris、Pratt三个提出来的,故取此名。

那么,KMP是如何运作的呢?
给大家来介绍一下:

我们令两个指针i,j表示,A[i-j+1~i]与B[1~j]完全相同。
假设对于我们已经求出的两个指针i,j,就有以下两种运算:
   1.若A[i+1]=B[j+1],则i=i+1,j=j+1
   2.若A[i+1]≠B[j+1],那我们只需要减少j去满足A[i-j+1~i]与B[1~j]保持匹配且新的B[j+1]恰好与A[i+1]匹配。

下面对“abababaababacb”和“ababacb”进行处理:
我们看一看当 i=j=5时的情况。

i =0  1  2  3  4  5  6  7  8  9 10 11
A =   a  b  a  b  a  b  a  a  b  a  b 
B =   a  b  a  b  a  c  b
j =0  1  2  3  4  5  6  7

此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j’。j’可能是多少呢?仔细想一下,我们发现,j’必须要使得B[1..j]中的头j’个字母和末j’个字母完全相等(这样j变成了j’后才能继续保持i和j的性质)。这个j’当然要越大越好。在这里,B [1..5]=”ababa”,头3个字母和末3个字母都是”aba”。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

 i =0  1  2  3  4  5  6  7  8  9 10 11
 A =   a  b  a  b  a  b  a  a  b  a  b
 B =         a  b  a  b  a  c  b
 j =      0  1  2  3  4  5  6  7

从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

 i =0  1  2  3  4  5  6  7  8  9 10 11
 A =   a  b  a  b  a  b  a  a  b  a  b
 B =         a  b  a  b  a  c  b
 j =      0  1  2  3  4  5  6  7

由于P[5]=3,因此新的j=3:

 i =0  1  2  3  4  5  6  7  8  9 10 11
 A =   a  b  a  b  a  b  a  a  b  a  b 
 B =               a  b  a  b  a  c  b
 j =            0  1  2  3  4  5  6  7

这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

 i =0 1  2  3  4  5  6  7  8  9 10 11
 A =  a  b  a  b  a  b  a  a  b  a  b 
 B =                    a  b  a  b  a  c  b
 j =                 0  1  2  3  4  5  6  7

现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

 i =0  1  2 3  4  5  6  7  8  9 10 11
 A =   a  b a  b  a  b  a  a  b  a b 
 B =                    a  b  a  b  a  c  b
 j =                 0  1  2  3  4  5  6  7

终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]=”d”时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。

因此这一段代码如下

int work()
{
    int j=0,ans=0;
    for(int i=1;i<=n;i++)
    {
        while(j>0 && b[j+1]!=a[i])j=p[j];
        if(b[j+1]==a[i])j++;
        if(j==m)
        {ans++; j=p[j];}
    }
    return ans;
}

最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
预处理可以通过P[1],P[2],…,P[j-1]的值来获得P[j]的值。对于刚才的B=”ababacb”,假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

     1 2 3 4 5 6 7
 B = a b a b a c b
 P = 0 0 1 2 3 ?

P[5]=3是因为B[1..3]和B[3..5]都是”aba”;而P[3]=1则告诉我们,B[1]和B[5]都是”a”。既然P[6]不能由P [5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
Codes:

void init()
{
    int j=0;
    p[1]=0;
    for(int i=2;i<=m;i++)
    {
        while(j>0 && b[j+1]!=b[i])j=p[j];
        if(b[j+1]==b[i])j++;
        p[i]=j;
    }   
}

最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

所以上述题目的代码就是:

#include<cstdio>
#include<cstring>
using namespace std;

int n,m,p[101];
char a[101],b[101];

void init();
int work();

int main()
{
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    scanf("%s\n%s\n",a+1,b+1);
    n=strlen(a+1);
    m=strlen(b+1);
    init();
    printf("%d",work());
}

void init()
{
    int j=0;
    p[1]=0;
    for(int i=2;i<=m;i++)
    {
        while(j>0 && b[j+1]!=b[i])j=p[j];
        if(b[j+1]==b[i])j++;
        p[i]=j;
    }   
}

int work()
{
    int j=0,ans=0;
    for(int i=1;i<=n;i++)
    {
        while(j>0 && b[j+1]!=a[i])j=p[j];
        if(b[j+1]==a[i])j++;
        if(j==m)
        {ans++; j=p[j];}
    }
    return ans;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值