FatMouse's Speed(HDOJ-1160)

Problem Description

FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing.

Input

Input contains data for a bunch of mice, one mouse per line, terminated by end of file.

The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice.

Two mice may have the same weight, the same speed, or even the same weight and speed.

Output

Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing a mouse). If these n integers are m[1], m[2],…, m[n] then it must be the case that

W[m[1]] < W[m[2]] < … < W[m[n]]

and

S[m[1]] > S[m[2]] > … > S[m[n]]

In order for the answer to be correct, n should be as large as possible.
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one.

Sample Input

6008 1300
6000 2100
500 2000
1000 4000
1100 3000
6000 2000
8000 1400
6000 1200
2000 1900

Sample Output
4
4
5
9
7

题意:

有许多老鼠,求出最长的序列使得依次重量递增并且速度递减。

思路:

动态规划。一开始以为是按给出的顺序进行挑选,但看到样例4->5->9->7并不要求id递增,所以应该是随意选取的。这样子的话先按重量后按速度先进行一次双关键字排序,然后进行dp。
用dp数组记录当前最长序列,path记录路径。从前往后进行递推,由于要更新路径,所以条件里不仅要nd[i].w > nd[j].w && nd[i].v < nd[j].v,还要加上一个当前的dp[i]比dp[j] + 1小,表示这时的ij是一个满足条件的序列,此时才更新路径,否则不更新路径。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
#include <stdlib.h>
#include <time.h>
#include <bitset>
using namespace std;

#define pi acos(-1)
#define s_1(x) scanf("%d",&x)
#define s_2(x,y) scanf("%d%d",&x,&y)
#define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define s_4(x,y,z,X) scanf("%d%d%d%d",&x,&y,&z,&X)
#define S_1(x) scan_d(x)
#define S_2(x,y) scan_d(x),scan_d(y)
#define S_3(x,y,z) scan_d(x),scan_d(y),scan_d(z)
#define PI acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x,y) memset(x,y,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define fOR(n,x,i) for(int i=n;i>=x;i--)
#define fOr(n,x,i) for(int i=n;i>x;i--)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)
#define bug printf("***********\n");
#define db double
#define ll long long
#define mp make_pair
#define pb push_back
typedef long long LL;
typedef pair <int, int> ii;
const int INF = 0x3f3f3f3f;
const LL LINF = 0x3f3f3f3f3f3f3f3fLL;
const int dx[] = {-1, 0, 1, 0, 1, -1, -1, 1};
const int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
const int maxn = 1e3+10;
const int maxx = 1e6+10;
const double EPS = 1e-8;
const double eps = 1e-8;
const int mod = 1e9+7;
template <class T> inline T min(T a, T b, T c) {return min(min(a, b), c);}
template <class T> inline T max(T a, T b, T c) {return max(max(a, b), c);}
template <class T> inline T min(T a, T b, T c, T d) {return min(min(a, b), min(c, d));}
template <class T> inline T max(T a, T b, T c, T d) {return max(max(a, b), max(c, d));}
template <class T> inline bool scan_d(T &ret) {
    char c;
    int sgn;
    if (c = getchar(), c == EOF) return 0;
    while (c != '-' && (c < '0' || c > '9')) c = getchar();
    sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
    while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
    ret *= sgn;
    return 1;
}
inline bool scan_lf(double &num) {
    char in;
    double Dec = 0.1;
    bool IsN = false, IsD = false;
    in = getchar();
    if (in == EOF) return false;
    while (in != '-' && in != '.' && (in < '0' || in > '9')) in=getchar();
    if (in == '-') {IsN = true; num = 0;}
    else if (in == '.') {IsD = true; num = 0;}
    else num = in - '0';
    if (!IsD) {
        while (in = getchar(), in >= '0' && in <= '9') {num *= 10; num += in - '0';}
    }
    if (in != '.') {
        if (IsN) num = -num;
        return true;
    }
    else{
        while (in = getchar(), in >= '0' && in <= '9') {
            num += Dec * (in - '0');
            Dec *= 0.1;
        }
    }
    if (IsN) num = -num;
    return true;
}
void Out(LL a) {if(a < 0) {putchar('-'); a = -a;}if(a >= 10) Out(a / 10); putchar(a % 10 + '0');}
void print(LL a) {Out(a), puts("");}
/////////////////////////////////////    WHITE_YASHA    ///////////////////////////////////////////////////////
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
//cerr << "run time is " << clock() << endl;
struct node {
    int id, w, v;
    bool operator < (const node& a) const {
        if (w != a.w) return w < a.w;
        else return v > a.v;
    }
} nd[maxn];
int dp[maxn], path[maxn][maxn];
int main() {
    close();
    int cnt = 0;
    W (s_2(nd[cnt].w, nd[cnt].v) != EOF) {
        nd[cnt].id = cnt + 1;
        cnt++;
    }
    sort(nd, nd + cnt);
    FOr (0, cnt, i) {
        dp[i] = 1;
        path[i][0] = nd[i].id;
    }
    FOr (0, cnt, i) {
        fOR (i - 1, 0, j) {
            if (nd[i].w > nd[j].w && nd[i].v < nd[j].v && dp[i] < dp[j] + 1) {
                dp[i] = dp[j] + 1;
                FOr (0, dp[i] - 1, k) path[i][k] = path[j][k];
                path[i][dp[i] - 1] = nd[i].id;
            }
        }
    }
    int pos = 0, maxx = 0;
    FOr (1, cnt, i)
        if (maxx < dp[i]) {
            maxx = dp[i];
            pos = i;
        }
    cout << maxx << endl;
    FOr (0, dp[pos], i) cout << path[pos][i] << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值