图中连通块的个数:并查集

图的连通性问题

在地图上有若干城镇(点),已知所有有道路直接相连的城镇对。要解决整幅图的连通性问题。比如,随意给你两个点,让你判断它们是否连通;或者问你整幅图一共有几个连通块,也就是被分成了几个互相独立的块。
修路工程问题会问还需要修几条路才能将所有城镇连通起来,实质就是求有几个连通块。如果只有1个连通块,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通块,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都连通了;如果是3个连通块,则只要再修2条路……
所以,若存在n个连通块,只要修n-1条路,就能把所有点连通。
实际给定的城镇有几百个,路有若干条,而且可能存在回路。 这时就要用到并查集。
PS:
其实求连通子图个数,除了并查集,用DFS和BFS也能够实现。
DFS:每次从某一点出发,遍历完与它相连的所有点,子图数num+1;当遍历完所有点后,num即为所求。

并查集

并查集的概念

并查集由两个函数(并、查函数)和一个整型数组(集)构成。

  • 函数join是合并;
  • 函数find是查找;
  • 数组pre记录了每个点的前导点是什么;

并查集的局限及改进

单纯的并查集只能保证得到独立子图的个数,但是,(即使经过了路径压缩)它不能保证同属于一个独立子图的节点的前导节点都相同。
在这种情况下,如果还要判断两个节点是否属于同一个子图,还要再进行一次find(i)操作。
换句话说,经过一次对每个节点的遍历的find()操作,可以保证同一子图中的节点的前导节点都相同。

并查集的实现

用一个有趣的方式解释并查集的实现:
江湖上的大侠有师父和徒弟、下属,构成了许多树结构。连通块的个数可以认为是门派的个数。
这里写图片描述

pre数组

pre[1000]这个数组记录了每个大侠的上级是谁。

pre[15]=3
 
 

    表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛只知道自己的上级是杨左使,而不认识张无忌。要想知道自己的掌门是谁,只能一级级查上去。

    find函数和路径压缩

    路径压缩算法是指在每次查询上级的同时,都进行优化处理,所以整个树的层数都会维持在比较低的水平上。
    这里写图片描述
    find函数以及压缩路径可以用一个递归函数简单实现:

    int find(int a){  
        if(pre[a]!=a)  
            pre[a]=find(pre[a]);//路径压缩,本结点更新为根结点的子结点  
        return pre[a];  
    } 
    

    join函数

    再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个块的所有点就都连通了。
    用pre[]数组,该如何实现连线呢? 很简单,将一个门派的掌门指定为另一个门派掌门的下属。

    //让虚竹和周芷若做朋友
    void join(int x,int y) {
        int fx=find(x),fy=find(y);//虚竹的老大是玄慈,周芷若的老大是灭绝
        //玄慈和灭绝显然不是同一个人
        //于是让前者成为后者的下属                                                  
        if(fx!=fy) pre[fx]=fy;                                                                        
    }
     
     

      完整代码实现

      #include<iostream>  
      using namespace std;  
      
      int  pre[1050];     //保存节点的直接父节点
      
      //查找x的根节点 
      int find(int a){  
          if(pre[a]!=a)  
              pre[a]=find(pre[a]);//路径压缩,本结点更新为根结点的子结点  
          return pre[a];  
      } 
      //连接两个连通块
      void join(int x,int y) {  
          int fx=Find(x),fy=Find(y);  
          if(fx!=fy) pre[fy]=fx;  
      }   
      
      int main() {  
          int N,M,a,b,i,j,ans=0;  
          while(scanf("%d%d",&N,&M) && N) {
              //初始化pre数组
              for(i=1;i<=N;i++) pre[i]=i;  
              //根据连通情况,构建pre数组
              for(i=1;i<=M;i++) {  
                  scanf("%d%d",&a,&b);  
                  join(a,b);
              }  
      
          for(i=1;i<=N;i++) 
              if(pre[i]==i) ans++; //计算连通子图的个数ans
      
          cout<<ans;
          return 0;  
      }
       
       

        求小岛个数

        给定一个由1和0组成的二维字符数组,1代表陆地,0代表水。问被水包围的连通陆地区域的个数。
        这题可以用DFS的递归着色来解,也可以用并查集来做。

        class Solution {
        public:
            vector<int> pre;
            int count=0;
        
            int numIslands(vector<vector<char>>& grid) {
                if(grid.size()==0 || grid[0].size()==0)
                    return 0;
        
                int row = grid.size();
                int col = grid[0].size();
                pre.resize(row*col+1,0);
        
                //对pre数组进行初始化
                for(int i=0;i<row;i++)
                    for(int j=0;j<col;j++)
                    {
                        int num = col*i+j;
                        pre[num] = num;
                    }
        
                //遍历图中的每个点
                for(int i=0;i<row;i++)
                    for(int j=0;j<col;j++)
                    {
                        if(grid[i][j]=='1')
                        {
                            int down=i+1,right=j+1;
                            if(down<row && grid[down][j]=='1')
                                join(col*i+j,col*down+j);
                            if(right<col && grid[i][right]=='1')
                                join(col*i+j,col*i+right);
                        }
                    }
        
                //再遍历一次,计算islands的个数
                int ans = 0;
                for(int i=0;i<row;i++)
                    for(int j=0;j<col;j++)
                    {
                        int num = col*i+j;
                        if(pre[num] == num && grid[i][j]=='1')
                            ans++;
                    }
                return ans;
            }
        
            //并,将联通的点的pre设为同一个值
            void join(int x,int y){
                int fx=find(x);
                int fy=find(y);
                if(fx != fy)
                    pre[fx] = fy;
            }
        
            //找到a的祖先,并且路径压缩
            int find(int a){
                if(pre[a] != a)
                    pre[a] = find(pre[a]);
                return pre[a];
            }
        };
         
         
          评论
          添加红包

          请填写红包祝福语或标题

          红包个数最小为10个

          红包金额最低5元

          当前余额3.43前往充值 >
          需支付:10.00
          成就一亿技术人!
          领取后你会自动成为博主和红包主的粉丝 规则
          hope_wisdom
          发出的红包
          实付
          使用余额支付
          点击重新获取
          扫码支付
          钱包余额 0

          抵扣说明:

          1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
          2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

          余额充值