ComputerVision
文章平均质量分 74
关于CV的一些学习笔记,案例,实际开发中遇到的问题等等
学习时长两年半的小学生
我要一步一步往上爬~
展开
-
自适应阈值法(图文总结)
概念:该方法网上很多很简洁但是很难懂的公式,本文章将会由简单例子入手,一步步去理解那些公式,但是不做代码实现,毕竟只要搞懂了这个算法的思想,代码的实现其实千变万化,甚至用CV库的话根本不用写代码。为啥出现这个二值化算法,OTSU的致命缺陷在哪里?在大津算法OTSU中,由于采取的都是全局均值求出最佳全局阈值,但是在图片光照不均匀的场景,很容易把稍微模糊的边缘目标图像当作背景,为了避免这种场景,我们就可以考虑更为细腻的局部自适应阈值,它是根据图像不同区域亮度,不断计算更新局部阈值,同时不断“刷新”局部图像原创 2022-03-31 15:05:09 · 10150 阅读 · 0 评论 -
大津算法OTSU(最大类间差法)
由日本人大津于1979年提出,基本思想就是,找到令前景和背景差距最大的那个T,就是最佳阈值(1)对于图像I,设T为前景与背景的分割阈值(初始化阈值),记住T是会浮动的,它会慢慢调整(2)根据上一步初始化定义的T:设前景像素点数占图像比例为W0,前景平均灰度值为u0设背景像素点数占图像比例为W1,背景平均灰度值为u1(3)设图像总平均灰度 ut = w0u0 + w1u1(4)计算方差值Q=W0*(u0-ut)^2 + W1*(u1-ut)^2方差值越大,说明图像构成的两部分差别越大,在该点阈值原创 2022-03-31 10:04:55 · 1311 阅读 · 0 评论 -
双峰阈值法
概念:1996年,Prewitt提出了直方图双峰法,即如果灰度级直方图呈明显的双峰状,则选取两峰之间的谷底所对应的灰度级作为阈值。(横坐标是图像中各像素点的灰度级,纵坐标是具有该灰度级(像素值)的像素个数。)它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。例子:注意X轴是灰度值,Y轴是该灰度值的像素点个数(1)初始化:假设我现在有一张图片的灰度直方图如下,初始化双峰V1=(0,30),V2=(255,30),初始化阈值为th = 127此原创 2022-03-29 16:46:38 · 3366 阅读 · 0 评论 -
腐蚀与膨胀算法
(1)概念腐蚀与膨胀算法,是一种入门级基础的形态学处理算法,常见用于图形处理方面腐蚀操作可以消除噪点,同时消除部分边界值,导致目标图像整体缩小。膨胀操作可以使目标特征值增大,导致目标图像整体放大。他两组合起来使用,可以达到更好分割独立的图形元素的目的。核:腐蚀和膨胀算法的灵魂,也是最需要花心思设计的东西,根据目标图像的特征不同,要设置不同的核才能产生很好的效果更专业的叫法叫做“结构元素”,其中核心,也就是结构元素的中心点,叫做“锚点”,一般采用结构元素的影响区域的最小像素值去替换掉“锚点”的像素原创 2022-03-24 15:05:35 · 24638 阅读 · 9 评论 -
梯度下降算法
1:概念首先我们看下面一张图玩个游戏假设红色的点,是你目前站的地方(山顶)黄色的点,是你的目标地点(营地)你被空投到了雪山山顶,现在山顶美景欣赏完了,急着到山下的营地吃个饱饭睡个觉,那么这个时候就要下山,可是你不知道下山的路该怎么走/要走多久等等那么,怎么下?肯定不可能一下子跳下来,而是按照正常人的思维,找一条下山的路,一点点一点点分阶段往下(如下图)就像我们下山,都是先环顾四周,找到下一个比较低且路好走的地方,走过去,再站在那里找下一个比较低且路好走的地方,走过去,再站在那里……周而复始原创 2022-03-21 16:03:36 · 2562 阅读 · 1 评论