machine-learning
whitesilence
这个作者很懒,什么都没留下…
展开
-
常用表达式的矩阵表示
X=(x1,x2,...,xm)∈Rp×mX=(x_1,x_2,...,x_m) \in R^ {p\times m},Y=(y1,y2,...,yl)∈Rc×lY=(y_1,y_2,...,y_l)\in R^{c\times l},l≤ml \leq m. xi↔yix_i \leftrightarrow y_i,i=1,…,li=1,\ldots ,l. II 为l×l{l\times l}单原创 2016-03-16 09:43:12 · 10348 阅读 · 0 评论 -
FDA降维
FDA是一个传统的有用的线性有监督的降维方法,FDA通过最大化类间距离,最小化类内距离的方法降维,但是对于呈现多峰的样本数据的降维效果并不好。为了对多峰数据降维,首要的是要保持数据的局部结构。LPP通过保持数据的局部结构获得很好的降维效果,但他只能用于无监督的情况,不能将样本的标签信息考虑在内。 由于类间散布矩阵不是满秩的,所以FDA只能将数据映射到维数小于类个数的低维空间,这是FDA的局限。原创 2016-03-24 10:53:19 · 4100 阅读 · 0 评论 -
PCA和核PCA
PCA 当处理高维数据时,需要面临降维,进行特征抽取,PCA是特征抽取的主要方法之一,特征抽取即利用映射的方法,将高维度的样本映射至低维度。PCA适用于非监督的不带标签的样本降维,特别是小样本问题。广义认为,这类样本属性之间的相关性很大,通过映射,将高维样本向量映射成属性不相关的样本向量。实际上,大的特征值表征这个映射向量——或者映射方向,能够使样本在映射后,具有最大的方差。样本在这个方向最发散。原创 2016-03-28 17:04:09 · 3568 阅读 · 0 评论 -
MVU
MVUMVU算法核心思想\ 在局部等距约束条件下通过最大化非近邻点间的距离在低维空间中展开高维数据。原创 2016-03-31 15:56:24 · 9629 阅读 · 0 评论 -
一些预处理方法的链接
MFCC特征提取详解:http://my.oschina.net/jamesju/blog/193343原创 2016-04-17 19:51:20 · 455 阅读 · 0 评论 -
python实现KNN解析
KNN函数#-*- coding:utf-8 -*- #有中文时必须加上这一句from math import powfrom collections import defaultdict #关于集合的库from multiprocessing import Process, cpu_count, Queue #关于进程的库import numpy as npclass Neighb原创 2017-07-02 16:36:57 · 611 阅读 · 0 评论