Python
常用易混淆的python代码总结学习
whitesilence
这个作者很懒,什么都没留下…
展开
-
PIL 中image
以前在matlab中,读入图像,输出图像size是(高度,宽度,通道) 在python中,读入图像,输出图像size是(宽度,高度) 例如这幅图 是一张宽度为240,高度为100的rgb图像,命名为code.jpg在matlab中,读入图像,输出size:A=imread('code.jpg');size(A)输出是ans = 100 240 3在Python中:from PI原创 2017-07-12 09:44:12 · 466 阅读 · 0 评论 -
python 按不同维度求和,最值,均值
当变量维数加大时很难想象是怎样按不同维度求和的,高清楚一个,其他的应该就很清楚了,什么都不说了,上例子,例子一看便明白…..a=range(27)a=np.array(a)a=np.reshape(a,[3,3,3])输出a的结果是:array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10原创 2017-07-13 15:50:53 · 18855 阅读 · 0 评论 -
关于多维数组的reshape
对比下面两个例子,应该很清楚关于-1的reshapeaa=range(42)a=np.array(aa)a=a.reshape(6,7)输出a为:array([[ 0, 1, 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11, 12, 13], [14, 15, 16, 17, 18, 19, 20], [21, 22,原创 2017-07-13 15:59:11 · 2725 阅读 · 0 评论 -
numpy.random.shuffle(x) 和 numpy.random.permutation(x)
numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不同,或者说有什么关系?np.random.permutation返回一个重排后的序列副本,原矩阵不变 而np.random.shuffle无返回值,直接对原序列进行重排,最终改变了原序列看下面的代码import numpy as npx=range(9)print 'p原创 2017-07-23 20:36:20 · 842 阅读 · 0 评论 -
numpy数组切片操作
numpy 数组的切片操作 关于-1的解析再来看个多维数组的情况A=np.array(range(24))A=np.reshape(A,[4,3,2])输出:Aarray([[[ 0, 1], [ 2, 3], [ 4, 5]], [[ 6, 7], [ 8, 9], [10, 11]], [[1原创 2017-12-19 22:00:51 · 1501 阅读 · 1 评论