树-二叉搜索树的后序遍历序列-JZ23

本文解析如何通过后序遍历判断整数数组是否符合二叉搜索树的特性,利用递归实现划分并验证子树序列。关键步骤包括确定根节点、划分子树区间及检查子树的合法性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则返回true,否则返回false。假设输入的数组的任意两个数字都互不相同。(ps:我们约定空树不是二叉搜索树)
示例1

输入: [4,8,6,12,16,14,10]
返回值: true

思路
1.二叉搜索树:左子树全部小于根节点,右子树全部大于根节点
2.后序遍历:左子树 -> 右子树 -> 根节点,做后一个节点是根节点
3.我们可以将一个序列划分为3段, 左子树+右子树+根, 例如[4, 8, 6, 12, 16, 14, 10]可以根据根节点的值将其划分为左子树[4, 8, 6], 右子树[12, 16, 14], 根[10],
4.代码中可以先确定的右子树区间, 因此当左子树区间中出现大于根节点的值时, 序列不合法, 我们再采用分治的思想, 对于每段序列代表的子树, 检查它的左子树和右子树, 当且仅当左右子树都合法时返回true

代码

public class Solution {
    public boolean VerifySquenceOfBST(int [] sequence) {
        if(sequence == null || sequence.length == 0) {
            return false;
        }
        return check(sequence, 0, sequence.length - 1);
    }
    //检查数组中left到right是不是二叉搜索树
    public boolean check(int [] sequence, int left, int right) {
        if (left >= right) {
            //只有一个节点
            return true;
        }
        int root = sequence[right];
        int index = right - 1;//定义的左子树的右边界
        while (index >= 0 && sequence[index] > root) {
            index--;
        }
        //检查左子树是否有大于根节点的
        for (int i = left; i <= index; i++) {
            if (sequence[i] > root) {
                return false;
            }
        }
        return check(sequence, left, index) && check(sequence, index+1, right-1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值