DTFT、DFT、FFT的区别与联系
DTFT(离散时间傅立叶变换)顾名思义是对离散的时间序列进行的傅立叶变换;假设有一连续的信号为x(t),对其进行傅立叶变换的定义式为:
对连续信号x(t)进行抽样后再进行傅立叶变换的公式变为:
x(nTs)可以表示为x[n],数字角频率w=ΩTs,上式简化为:
上式即为DTFT的定义式,根据推导过程揭示了其与FT的关系。根据抽样定理我们知道对连续信号进行抽样,其频谱会以Ws进行搬移。DTFT的数字角频率是对模拟角频率的归一化处理得到的(与采样周期Ts相乘),所以DTFT的频谱是以2pi为周期的连续谱。
由于计算机处理的数据都是离散的,所以我们不仅要求信号为离散的,还要求频谱是离散的,所以我们还要对频谱进行采样即DFT。其定义式为:
所以DFT是对DTFT的频谱采样,至于FFT则是DFT的快速算法。
频率分辨率
我们在对DTFT的频谱进行采样后自然会涉及到分辨率这个问题,频率