模式识别相似性测度距离计算---马氏距离

马氏距离是一种衡量样本间相似度的方法,考虑了特征间的联系并具备尺度无关性。计算涉及样本均值、协方差矩阵及逆矩阵。与欧氏距离不同,马氏距离在总体样本基础上计算,对总体协方差矩阵敏感,适用于样本数大于维数的情况。在某些特定情况下如样本共线或协方差矩阵逆不存在时,需采用欧氏距离。马氏距离的优点包括不受量纲影响和排除相关性干扰,但计算不稳定且可能夸大微小变量影响。
摘要由CSDN通过智能技术生成

马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。对于一个均值为μ,协方差矩阵为Σ的多变量向量,其马氏距离为(x-μ)'Σ^(-1)(x-μ)。

下面是关于马氏距离的计算方法(参考:http://topic.csdn.net/u/20080911/14/f4402565-3b4f-4de4-a4fa-f4c020dd1477.html )
两个样本:
His1 = {3,4,5,6}
His2 = {2,2,8,4}
它们的均值为:
U = {2.5, 3, 6.5, 5}
协方差矩阵为:
S =
| 0.25 0.50 -0.75 0.50 |
| 0.50 1.00 -1.50 1.00 |
|-0.75 -1.50 2.25 -1.50 |
| 0.50 1.00 -1.50 1.00 |
其中S(i,j)={[His1(i)-u(i)]*[His1(j)-u(j)]+[His2(i)-u(i)]*[His2(j)-u(j)]}/2
下一步就是求出逆矩阵S^(-1)
马氏距离 D=sqrt{[His1-His2] * S^(-1) * [(His1-His2)的转置列向量]}

马氏优缺点:
1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值