英文分词算法(Porter stemmer)

题记

最近需要对英文进行分词处理,希望能够实现还原英文单词原型,比如 boys 变为 boy 等。


简介

发现一个不错的工具Porter stemmer,主页是http://tartarus.org/~martin/PorterStemmer/。它被实现为N多版本,C、Java、Perl等。

下面是它的简单介绍:

Stemming, in the parlance of searching and information retrieval, is the operation of stripping the suffices from a word, leaving its stem. Google, for instance, uses stemming to search for web pages containing the words connectedconnectingconnection and connections when you ask for a web page that contains the word connect.

There are basically two ways to implement stemming. The first approach is to create a big dictionary that maps words to their stems. The advantage of this approach is that it works perfectly (insofar as the stem of a word can be defined perfectly); the disadvantages are the space required by the dictionary and the investment required to maintain the dictionary as new words appear. The second approach is to use a set of rules that extract stems from words. The advantages of this approach are that the code is typically small, and it can gracefully handle new words; the disadvantage is that it occasionally makes mistakes. But, since stemming is imperfectly defined, anyway, occasional mistakes are tolerable, and the rule-based approach is the one that is generally chosen.

In 1979, Martin Porter developed a stemming algorithm that, with minor modifications, is still in use today; it uses a set of rules to extract stems from words, and though it makes some mistakes, most common words seem to work out right. Porter describes his algorithm and provides a reference implementation in C at http://tartarus.org/~martin/PorterStemmer/index.html;

以前也曾经尝试过这个算法,但是因为下面的原因就放弃了!

比如输入 "create" 和 "created" ,得到的结果是 "creat" 。这点让我大失所望!这根本就没有把单词还原为原来的样子啊?

这次没办法,还是需要实现这样的功能,Google了半天,就发现Lucene里面有英文分词模块,可惜太复杂了,不适合我的这种简单应用。后来才知道,其实lucene里用的也就是这种方法。

于是乎,硬着头皮看了下他的主页,在FQA里发现了下面这句话!恍然大悟。

The purpose of stemming is to bring variant forms of a word together, not to map a word onto its ‘paradigm’ form.
Porter stemmer 并不是要把单词变为规范的那种原来的样子,它只是把很多基于这个单词的变种变为某一种形式!换句话说,它不能保证还原到单词的原本,也就是"created"不一定能还原到"create",但却可以使"create" 和 "created" ,都得到"creat" !


实例

比如我输入 "create" 和 "created" ,它解析得到 "creat"

那么,只需要在查询时也做同样的处理即可!比如查询 "create created",在数据库里查的时候,都只需要检索"creat"即可!


附录

简单词汇处理前后的对比:http://snowball.tartarus.org/algorithms/porter/diffs.txt

主程序(相当精悍啊):http://tartarus.org/martin/PorterStemmer/java.txt

(全文完)

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值