LeetCode - 416. 分割等和子集

本文探讨了如何使用动态规划解决LeetCode上的416题——分割等和子集。通过分析问题特性,将问题转化为寻找一个子集,其元素之和等于数组总和的一半。文章详细介绍了动态规划的实现过程,包括状态定义、状态转移方程以及具体的代码实现。
摘要由CSDN通过智能技术生成

416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意:

  • 每个数组中的元素不会超过 100
  • 数组的大小不会超过 200

解题思路: 这题一开始我想到的思路是用DFS去解,因为此题有一个明显的特征,每个值有两个选择,即选或者不选,然后要求将集合分为两个子集,使得子集的和相等,那么可以转化为找一个子集,使这个子集的和等于总和的一半,但是DFS解法超时了。另外想到的一个想法是,有点类似01背包的场景,但是01背包是求极值问题。不过这题可以用动态规划解,Dynamic Programming。具体的是,dp[i]表示集合中能够凑齐一个子集,使得子集的和值为i,那么我们只需遍历一次nums数组,在遍历到num时,更新dp[i]的值,即状态转移方程是:dp[i] = dp[i] || dp[i - num].不过我们常规情况下,在计算dp值时会把dp放在外循环更新,这题是不行的,放在外循环更新,会导致某一个num被使用多次。那么我们在解决DP问题时,要将每一个子状态分成互斥且完备状态,这样才能规避存在交集或者遗漏的问题。

[LeetCode] 416. Partition Equal Subset Sum 相同子集和分割

// DP, Time: O(nm), Space:O(m)
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = accumulate(nums.begin(), nums.end(), 0), target = (sum >> 1);
        if (sum & 1) return false;
        vector<bool> dp(target + 1, false);
        dp[0] = true;
        for (auto num : nums) {
            for (int i = target; i >= num; --i) {
                dp[i] = dp[i] || dp[i - num];
            }
        }
        return dp[target];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值