快速幂、矩阵快速幂及其模板

快速幂

题目描述

给定 3 3 3个整数 a , b , p a,b,p a,b,p,求 a b   m o d   p a^b\ mod\ p ab mod p的值。

输入输出格式
输入格式:

3 3 3个整数 a , b , p a,b,p a,b,p

输出格式:

a b   m o d   p a^b\ mod\ p ab mod p的值。

输入输出样例
输入样例#1:

2 3 7

输出样例#1:

1

输入样例#2:

23 15 103

输出样例#2:

81

说明

【数据范围】

对于全部数据, a , b , p a,b,p a,b,p l o n g   l o n g long\ long long long范围内。

算法

我们知道,

∀ b ∈ N , ∃ A = { a i } ( i ∈ N , a i ∈ { 0 , 1 } ) ⇒ b = ∑ i = 0 ⌊ log ⁡ 2 b ⌋ 2 i a i \forall b\in\mathbb{N},\exists A= \{a_i\}(i\in\mathbb{N},a_i\in\{0,1\})\Rightarrow b=\sum^{\lfloor\log_2 b\rfloor}_{i=0}2^ia_i bN,A={ai}(iN,ai{0,1})b=i=0log2b2iai

所以,

a b = a ∑ i = 0 ⌊ log ⁡ 2 b ⌋ 2 i a i = ∏ i = 0 ⌊ log ⁡ 2 b ⌋ a 2 i a i a^b=a^{\sum^{\lfloor\log_2 b\rfloor}_{i=0}2^ia_i}=\prod^{\lfloor\log_2 b\rfloor}_{i=0}a^{2^ia_i} ab=ai=0log2b2iai=i=0log2ba2iai

其中 a 2 i a^{2^i} a2i可以通过递推用 Θ ( log ⁡ b ) \Theta(\log b) Θ(logb)的时间生成。所以我们只要把 b b b每次除以二,看这次的奇偶性再决定是否要乘到 a n s ans ans上就行了。

实现
快速幂模板:
typedef long long ll;
ll QuickPow(ll a, ll b, ll p)
{

    ll res = 1;
    a %= p;
    while (b) {
        if (b & 1) res = (res * a) % p;

        a = (a * a) % p;
        b >>= 1;
    }
    return res;
}
代码:
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

ll a, b, p;

ll QuickPow(ll a, ll b, ll p)
{

    ll res = 1;
    a %= p;
    while (b) {
        if (b & 1) res = (res * a) % p;

        a = (a * a) % p;
        b >>= 1;
    }
    return res;
}

int main()
{
    //freopen("LCA.in", "r", stdin);
    //freopen("LCA.out", "w", stdout);

    scanf("%lld%lld%lld", &a, &b, &p);
	printf("%lld", QuickPow(a, b, p));
	return 0;
}

矩阵快速幂

题目描述

给定 2 2 2个正整数 n , p n,p n,p,求 F i b o n a c c i Fibonacci Fibonacci数列的第 n n n m o d   p mod\ p mod p的值。

输入输出格式
输入格式:

2 2 2个整数 n , p n,p n,p

输出格式:

F i b o n a c c i Fibonacci Fibonacci数列的第 n n n m o d   p mod\ p mod p的值。

输入输出样例
输入样例#1:

5 11

输出样例#1:

5

输入样例#2:

39 107

输出样例#2:

105

说明

【数据范围】

对于全部数据, n , p n,p n,p l o n g   l o n g long\ long long long范围内。

算法

我们记 F i b o n a c c i Fibonacci Fibonacci数列第 n n n项为 f n f_n fn
假定存在实数 a , b , c , d a,b,c,d a,b,c,d,使

( a b c d ) ( f n − 1 f n ) = ( f n f n + 1 ) = ( f n f n − 1 + f n ) \left( \begin{matrix} a &amp; b \\ c &amp; d \end{matrix} \right) \left( \begin{matrix} f_{n-1} \\ f_n \end{matrix} \right) = \left( \begin{matrix} f_n \\ f_{n+1} \end{matrix} \right) = \left( \begin{matrix} f_n \\ f_{n-1} + f_n \end{matrix} \right) (acbd)(fn1fn)=(fnfn+1)=(fnfn1+fn)

易见

( a b c d ) = ( 1 1 1 0 ) \left( \begin{matrix} a &amp; b \\ c &amp; d \end{matrix} \right) = \left( \begin{matrix} 1 &amp; 1 \\ 1 &amp; 0 \end{matrix} \right) (acbd)=(1110)

所以

( f n f n + 1 ) = ( 1 1 1 0 ) ( f n − 1 f n ) = ( 1 1 1 0 ) 2 ( f n − 2 f n − 1 ) = ( 1 1 1 0 ) n ( 1 1 ) \left( \begin{matrix} f_n \\ f_{n+1} \end{matrix} \right)= \left( \begin{matrix} 1 &amp; 1 \\ 1 &amp; 0 \end{matrix} \right) \left( \begin{matrix} f_{n-1} \\ f_n \end{matrix} \right) = \left( \begin{matrix} 1 &amp; 1 \\ 1 &amp; 0 \end{matrix} \right)^2 \left( \begin{matrix} f_{n-2} \\ f_{n-1} \end{matrix} \right) = \left( \begin{matrix} 1 &amp; 1 \\ 1 &amp; 0 \end{matrix} \right)^n \left( \begin{matrix} 1 \\ 1 \end{matrix} \right) (fnfn+1)=(1110)(fn1fn)=(1110)2(fn2fn1)=(1110)n(11)

其中 ( 1 1 1 0 ) n \left( \begin{matrix} 1 &amp; 1 \\ 1 &amp; 0 \end{matrix} \right)^n (1110)n可以 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn)实现

数学优化果然是最强的。。。

实现
代码:
#include <bits/stdc++.h>
using namespace std;

long long n, m, fb[3];
struct Node {
    long long g[4][4];
} f, res;

void matrixI(Node &x)
{
    for (int i = 1; i <= 2; i++)
        for (int j = 1; j <= 2; j++)
            x.g[i][j] = (i == j);
}

void matrixMultiple(Node &x, Node &y, Node &z)
{
    memset(z.g, 0, sizeof(z.g));

    for (int i = 1; i <= 2; i++) {
        for (int j = 1; j <= 2; j++) {
            if (x.g[i][j]) {
                for (int k = 1; k <= 2; k++) {
                    z.g[i][k] += x.g[i][j] * y.g[j][k];
                    z.g[i][k] %= m;
                }
            }
        }
    }
}

void matrixMuli(int k)
{
    matrixI(res);
    Node tmp = f, t;
    while (k) {
        if (k & 1) {
            matrixMultiple(res, tmp, t);
            res = t;
        }
        matrixMultiple(tmp, tmp, t);
        tmp = t;
        k >>= 1;
    }
}

long long solve()
{
    if (n <= 2) return 1;
    matrixMuli(n - 2);
    return (res.g[1][1] + res.g[2][1]) % m;
}

int main()
{
    //freopen("Fibonacci.in","r",stdin);

    scanf("%lld%lld", &n, &m);
    f.g[1][1] = 1;
    f.g[1][2] = 1;
    f.g[2][1] = 1;
    f.g[2][2] = 0;
    printf("%lld\n", solve());
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值