多重背包问题 II

这是一篇关于多重背包问题的动态规划分析,通过闫学灿的DP方法讲解如何解决物品选择问题,以达到背包体积不超过限制且最大化价值。题目提供了一组物品的体积、价值和数量,要求找出能放入背包的最大价值。文章适合熟悉动态规划和二进制优化的读者阅读。
摘要由CSDN通过智能技术生成

原题链接:https://www.acwing.com/problem/content/5/
注:方法都是根据闫学灿的DP分析法得到的,欢迎大家去B站搜索原视频。

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N≤1000
0<V≤2000
0<vi,wi,si≤2000
提示:
本题考查多重背包的二进制优化方法。

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

import java.util.*;

public class Main{
   
    public static void main(String[] args){
   
        Scanner in = new Scanner(System.in);
        int N = in.nextInt(),V = in.nextInt();
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值