二维费用的背包问题

原题链接:https://www.acwing.com/problem/content/8/
注:方法都是根据闫学灿的DP分析法得到的,欢迎大家去B站搜索原视频。

有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。

每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。

接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例:
8

import java.util.*;

public class Main{
    public static void main(String args[]){
        Scanner in = new Scanner(System.in);
        int N = in.nextInt(), V = in.nextInt(),M = in.nextInt();
        int[][] f = new int[V+1][M+1];
        int[] v = new int[N+1];
        int[] m = new int[N+1];
        int[] w = new int[N+1];
        for(int i = 1; i <= N; i++){
            v[i] = in.nextInt();
            m[i] = in.nextInt();
            w[i] = in.nextInt();
        }
        for(int i = 1; i <= N; i++){
            for(int j = V; j >= v[i]; j--){
                for(int k = M; k >= m[i]; k--){
                    f[j][k] = Math.max(f[j][k], f[j - v[i]][k - m[i]] +  w[i]);
                }
            }
        }
        System.out.println(f[V][M]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值