5.二维费用的背包问题
问题:
有N件物品和一个容量是V的背包,背包能承受的最大重量是M。
每件物品只能用一次,体积是vi,重量是mi,价值是wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包的容量,总重量不可超过背包可承受的最大重量,且价值总和最大。
输出最大价值
输入格式
第一行有两个整数,N,V,M用空格隔开,分别表示物品种数、背包容积和背包能承受的最大重量。
接下来有N行,每行三个整数vi,mi,si,用空格隔开,分别表示第i种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值
数据范围
0<N<=1000
0<V,M<=100
0<vi,mi<=100
0<wi<=1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例
8
分析思路
时间复杂度:10^7
每个物品只能用一次->01背包问题
枚举:体积,重量->从大到小枚举
f[i][j]:表示总体积是i,重量为j的情况下,最大价值是多少
状态转移:
第一层循环:枚举每个物品(从前往后)
第二层循环:枚举体积
第三层循环:枚举重量
代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=110;
int n,v,m;
int f[N][N];
int main(){
cin>>n>>v>>m;
for(int i=0;i<n;i++) //从前往后枚举物品
{
int a,b,c;
cin>>a>>b>>c;
for(int j=v;j>=a;j--) //体积从大到小枚举
for(int k=m;k>=b;k--) //重量从大到小枚举
f[j][k]=max(f[j][k],f[j-a][k-b]+c); //转移
cout<<f[v][m]<<endl;
return 0;
}
}