假设加法的总和为x,那么减法对应的总和就是sum - x。
所以我们要求的是 x - (sum - x) = target
x = (target + sum) / 2
此时问题就转化为,装满容量为x的背包,有几种方法。
- dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
- 已知nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法
- 当我们考虑和为 0 的情况时,这意味着我们没有选择数组中的任何数字。显然,至少有一种方式可以达到这个和,即什么都不选。因此,dp[0] 应该初始化为 1
- 对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for(int i = 0; i < nums.size(); i++){
sum += nums[i];
}
if(abs(target) > sum){
return 0;
}
if((target + sum) % 2 == 1){
return 0;
}
int posNums = target + (sum - target) / 2;
vector<int> dp(posNums + 1);
dp[0] = 1;
for(int i = 0; i < nums.size(); i++){
for(int j = posNums; j >= nums[i]; j--){
dp[j] += dp[j - nums[i]] ;
}
}
return dp[posNums];
}
};