城市间货物运输Ⅰ-卡玛(Bellman_ford 队列优化算法(SPFA))

题目链接: 城市间货物运输Ⅰ
学习了代码随想录 Bellman_ford 队列优化算法(又名SPFA) 的记录。
Bellman_ford 算法每次松弛 都是对所有边进行松弛,但真正有效的松弛,是基于已经计算过的节点在做的松弛,所以 Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。
实际上 只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。

因此可以采用队列对 Bellman_ford 算法进行优化,将上一次松弛的时候更新过的节点作为出发节点加入到队列中。

队列优化版Bellman_ford 的时间复杂度 并不稳定,效率高低依赖于图的结构。如果图越稠密,则 SPFA的效率越接近与 Bellman_ford;反之,图越稀疏,SPFA的效率就越高。
一般来说,SPFA 的时间复杂度为 O(K * N) K 为不定值,因为 节点需要计入几次队列取决于 图的稠密度。
如果图是一条线形图且单向的话,每个节点的入度为1,那么只需要加入一次队列,这样时间复杂度就是 O(N)。
所以 SPFA 在最坏的情况下是 O(N * E),但 一般情况下 时间复杂度为 O(K * N)。

#include <bits/stdc++.h>
using namespace std;

int main(){
    int n,m,s,t,v;
    cin >> n >> m;
    vector<list<pair<int, int>>> grid(n + 1);
    while(m--){
        cin >> s >> t >> v;
        grid[s].push_back(make_pair(t, v));
    }
    vector<int> minDist(n + 1, INT_MAX);
    minDist[1] = 0;
    
    queue<int> que;
    que.push(1);
    
    while(!que.empty()){
        int cur = que.front();
        que.pop();
        for(auto& edge : grid[cur]){
            auto [next, val] = edge;
            minDist[next] = min(minDist[next], minDist[cur] + val);
            if(minDist[next] == minDist[cur] + val){
                que.push(next);
            }
        }
    }
    
    if(minDist[n] == INT_MAX){
        cout << "unconnected" << endl;
    }else{
        cout << minDist[n] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值