题目链接: 城市间货物运输Ⅰ
学习了代码随想录 Bellman_ford 队列优化算法(又名SPFA) 的记录。
Bellman_ford 算法每次松弛 都是对所有边进行松弛,但真正有效的松弛,是基于已经计算过的节点在做的松弛,所以 Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。
实际上 只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。
因此可以采用队列对 Bellman_ford 算法进行优化,将上一次松弛的时候更新过的节点作为出发节点加入到队列中。
队列优化版Bellman_ford 的时间复杂度 并不稳定,效率高低依赖于图的结构。如果图越稠密,则 SPFA的效率越接近与 Bellman_ford;反之,图越稀疏,SPFA的效率就越高。
一般来说,SPFA 的时间复杂度为 O(K * N) K 为不定值,因为 节点需要计入几次队列取决于 图的稠密度。
如果图是一条线形图且单向的话,每个节点的入度为1,那么只需要加入一次队列,这样时间复杂度就是 O(N)。
所以 SPFA 在最坏的情况下是 O(N * E),但 一般情况下 时间复杂度为 O(K * N)。
#include <bits/stdc++.h>
using namespace std;
int main(){
int n,m,s,t,v;
cin >> n >> m;
vector<list<pair<int, int>>> grid(n + 1);
while(m--){
cin >> s >> t >> v;
grid[s].push_back(make_pair(t, v));
}
vector<int> minDist(n + 1, INT_MAX);
minDist[1] = 0;
queue<int> que;
que.push(1);
while(!que.empty()){
int cur = que.front();
que.pop();
for(auto& edge : grid[cur]){
auto [next, val] = edge;
minDist[next] = min(minDist[next], minDist[cur] + val);
if(minDist[next] == minDist[cur] + val){
que.push(next);
}
}
}
if(minDist[n] == INT_MAX){
cout << "unconnected" << endl;
}else{
cout << minDist[n] << endl;
}
return 0;
}